Abstract:
A method used for a portable electronic apparatus includes: providing a touch panel for receiving an input of a user; and, determining whether to perform a sensing operation upon an sensed object corresponding to the input of the user via the touch panel to generate a sensing result which is associated with physiological characteristics.
Abstract:
There is provided an optical engine for a navigation device including a first light source, a second light source, a lens, a carrier member and an image sensor. The carrier member has a light holder, a lens holder, an accommodation space and a tilted wall. The first light source is arranged on the light holder of the carrier member, and reflected light associated with the first light source penetrates through the lens to propagate to the image sensor inside the accommodation space. Reflected light associated with the second light source penetrates through the tilted wall of the carrier member to propagate to the image sensor.
Abstract:
A joystick includes a stick head, an actuating component, a substrate, a bearing base, a resilient recovering component and a constraining component. The actuating component has a first end and a second end opposite to each other. The first end is connected to the stick head, and an identification feature is disposed on the second end. The substrate has a detection module used to detect the identification feature and determine motion of the stick head. The bearing base is disposed on the substrate. An opening portion of the bearing base aligns with the detection module and the actuating component. The resilient recovering component is disposed between the substrate and the bearing base. The constraining component is disposed on the resilient recovering component and movably disposed inside the opening portion, and used to abut against the actuating component in a detachable manner.
Abstract:
An electronic device, comprising: a first light source, configured to emit first light; a second light source, configured to emit second light; an optical sensor, configured to sense optical data generated according to reflected light of the second light or according to reflected light of the first light; and a control circuit, configured to analyze optical information of the optical data. If the control circuit determines variation of the optical information is larger than a variation threshold, the control circuit controls the first light source to be non-activated and the second light source to be activated.
Abstract:
An optical identification device includes a circuit board, a top cover, an optical detection module and an optical channel. The top cover is disposed on the circuit board and has an identification region. The optical detection module is disposed on the circuit board and located inside the top cover. The optical detection module includes an optical emitter and an optical receiver. The optical emitter is adapted to emit an illumination beam toward the top cover. The optical receiver is adapted to receive the illumination beam reflected from the top cover. The optical channel is disposed between the optical emitter and the top cover, and adapted to block the illumination beam from projecting onto a lower surface of the identification region facing the optical receiver.
Abstract:
An image identification method is used to eliminate accumulated error of operation of a joystick. The joystick has an optical sensor adapted to analyze a movement of a plurality of identification dots disposed on a stick body. The image identification method includes receiving a series of detection images, setting a first identification dot of the plurality of identification dots as being a reference identification dot, and setting a second identification dot of the plurality of identification dos as being the reference identification dot and cancelling the first identification dot as being the reference identification dot when the first identification dot is near a border of the detection image. A position change of the reference identification dot in the series of detection images is used for identifying a control status of the joystick.
Abstract:
A joystick has a related control method to provide displayed object control function. The joystick includes a body, an image sensor and a processor. The body has a deformable bottom surface whereon a pattern is disposed. The image sensor is disposed under the body and adapted to capture a frame about the pattern. The processor is electrically connected with the image sensor and adapted to generate a displayed object control signal according to pattern variation within the frame.
Abstract:
A joystick includes a casing, a stick body and an optical sensor. The casing has a hole. The stick body is movably disposed on the casing via the hole. The stick body includes a pressing portion, an indication portion and an identification pattern. The indication portion is connected to the pressing portion and inserts into the hole. A sunken structure is formed on a bottom of the indication portion. The identification pattern is disposed on an inner surface of the sunken structure. The optical sensor is disposed inside the casing and faces the sunken structure, and adapted to analyze a movement of the identification pattern to identify a control status of the stick body.
Abstract:
A joystick has a related control method to provide displayed object control function. The joystick includes a body, an image sensor and a processor. The body has a deformable bottom surface whereon a pattern is disposed. The image sensor is disposed under the body and adapted to capture a plurality of frames about the pattern. The processor is electrically connected with the image sensor and adapted to generate a displayed object control signal according to pattern variation within the plurality of frames.
Abstract:
A joystick has a related control method to provide displayed object control function. The joystick includes a body, an image sensor and a processor. The body has a deformable bottom surface whereon a pattern is disposed. The image sensor is disposed under the body and adapted to capture a plurality of frames about the pattern. The processor is electrically connected with the image sensor and adapted to generate a displayed object control signal according to pattern variation within the plurality of frames.