Abstract:
Quick frequency tracking (QFT), quick time tracking (QTT), and non-causal pilot filtering (NCP) are used to detect sporadically transmitted signaling, e.g., paging indicators. For QFT, multiple hypothesized frequency errors are applied to an input signal to obtain multiple rotated signals. The energies of the rotated signals are computed. The hypothesized frequency error with the largest energy is provided as a frequency error estimate. For QTT, coherent accumulation is performed on the input signal for a first set of time offsets, e.g., early, on-time, and late. Interpolation, energy computation, and non-coherent accumulation are then performed to obtain a timing error estimate with higher time resolution. For NCP, pilot symbols are filtered with a non-causal filter to obtain pilot estimates for one antenna for non-STTD and for two antennas for STTD. The frequency and timing error estimates and the pilot estimates are used to detect the signaling.
Abstract:
Techniques for predicting weights used for closed-loop transmit diversity. In a channel prediction scheme, channel gains for multiple transmit antennas are initially estimated (e.g., based on pilots received from these antennas) and used to derive predicted channel gains for a future time instant. The predicted channel gains are then used to derive predicted weights that are deemed to be “optimal” at the future time instant. Optimality may be determined based on one or more criteria, such as maximizing a received SNR for the received signals. In a weight prediction scheme, the channel gains for the multiple antennas are estimated and used to compute optimal weights for the current time instant. The current optimal weights are then used to predict the optimal weights at the future time instant. For both schemes, the prediction may be performed based on an adaptive filter (e.g., LMS or RLS filter) or a non-adaptive filter.
Abstract:
Techniques to mitigate spikes in transmit power, by reducing the magnitude and/or duration of the spikes, are described. Initially, power control is performed in a normal manner and in accordance with a transmit power control (TPC) scheme. If a (e.g., upward) transmit power spike is detected, the power control is performed in a manner to mitigate the adverse effects of the spike and in accordance with another TPC scheme. An upward transmit power spike may be detected, e.g., if a predetermined number of consecutive TPC commands in the upward direction is obtained for increasing transmit power. The upward transmit power spike may be mitigated by limiting the transmit power, reducing the rate of transmit power adjustment in the upward direction, delaying and/or filtering TPC decisions used for transmit power adjustment, preventing upward adjustment of transmit power, and so on. Multiple states may be defined and used to facilitate power control with spike mitigation.
Abstract:
Techniques are provided to control the transmit power for data transmission on multiple transport channels having different signal quality (SIR) targets. A single SIR target is maintained for all transport channels, and this SIR target is adjusted based only on active transport channels. For each update interval, a data processor processes at least one data block received in the current update interval on at least one of the transport channels and provides the status of each received data block. A controller increases the SIR target based on an up step if any received data block is erased and decreases the SIR target based on a down step if all received data blocks are good. If any received data block is erased, the down step used to adjust the SIR target may be set to the smallest down step size required by all transport channels with erased data blocks.
Abstract:
Apparatus and methods for low power sensing of wireless access technologies are disclosed. In particular, a mobile wireless device, such as an access terminal, may utilize a lower power circuitry portion that operates at a lower power than active circuitry, such as a primary transceiver. The lower power circuitry portion includes a configurable searcher that is capable of sensing if signals of one or more various wireless access technologies are present. When the wireless device utilizes sleep or idle modes for power savings, use of the lower power sensing circuitry to sense the presence of wireless access technologies, rather than using an awoken higher power primary transceiver for sensing, affords increased power savings. An added ability of the lower power circuitry to be put into sleep or idles modes achieves even greater power savings.
Abstract:
Methods and apparatus are directed to mobile devices utilizing motion and/or position sensors for improving operating performance and/or power efficiency. In one example, a method for reducing power consumption in a mobile device includes receiving movement information, establishing movement data based on the movement information, determining if the mobile device is stationary using the movement data; and reducing the frequency of searching for a base station when the mobile device is stationary. In another example, a mobile device which reduces power consumption based upon movement data includes an RF front end, a receiver coupled to the RF front end, a data demodulator coupled to the receiver, a searcher, coupled to the RF front end and the receiver, which searches for base stations, and a processing unit coupled to the searcher, wherein the processing unit controls the searcher based upon the stationarity of the mobile device.
Abstract:
Devices and methods are provided for deploying and/or implementing a low power mode in an access point (AP) base station. The low power mode may be implemented based on the presence and/or status of access terminals (ATs). In one embodiment, the method may involve determining whether any ATs are present within at least one defined coverage area. In another embodiment, the method may involve determining whether the ATs are in an idle or active state.
Abstract:
A wireless communications network (120) responds to each incoming call placed to a wireless communications device (134) by transmitting a call-paging message (418) within a corresponding partition of a digital radio frame of prescribed format. Responsive to each occurrence of a broadcast event (404), the network transmits (414) a repeating broadcast-paging message announcing the availability of broadcast content from the network. The broadcast-paging message is transmitted multiple times within each digital radio frame. Another sequence (500) describes WCD operation in this network. Responsive to wakeup (502) from sleep, the WCD detects (509) received signal quality. The WCD also receives (510) scheduled network transmission of a call-paging message and a number of instances (at least one) of a repeating network transmitted broadcast-paging message that occurs multiple times for each scheduled transmission of the call-paging message. This number varies inversely with the detected signal quality.
Abstract:
The described apparatus and methods may include a receiver configured to receive a signal, the signal being a combination of physical channel signals that each correspond to a different one of a plurality of physical channels, and a controller configured to capture signal energy from at least two of the physical channel signals, and detect a cell based on the captured signal energy.
Abstract:
A rake receiver finger assignor is configured to assign a rake receiver finger to a time offset between identified signal path time offsets in accordance with a concentration of identified signal paths from a transmitter to a rake receiver. In accordance with the exemplary embodiment, a number of identified signal paths having time offsets within a time window are observed to determine the concentration of signal paths identified by a path searcher. If the number of identified signal paths indicates a concentrated distribution of signal paths such as during a fat path condition, at least one rake finger is assigned between at a time offset between two identified signal paths.