Abstract:
A thermoplastic composition comprises a polycarbonate having repeating structural carbonate units of the formula (1): wherein at least 60 percent of the total number of R1 groups contain aromatic organic groups and the balance thereof are aliphatic, alicyclic, or aromatic groups; and wherein the polycarbonate comprises terminal groups derived from reaction with a cyanophenol of the formula wherein Y is a halogen, C1-3 alkyl group, C1-3 alkoxy group, C7-12 arylalkyl, C7-12 alkylaryl, or nitro group, y is 0 to 4, and c is 1 to 5, provided that y+c is 1 to 5; and a flame retardant. The compositions are useful in the manufacture of a wide variety of parts, particularly those having a thin wall.
Abstract:
A reaction product comprises a first polyester-polycarbonate comprising a polyester unit and a polycarbonate unit, a second polyester-polycarbonate comprising a polyester unit and a polycarbonate unit, and a transesterification catalyst. The reaction product has a haze of less than 1.7%, specifically less than 1.0% as measured at a thickness of 3.2 mm according to ASTM D1003-00. A thermoplastic composition comprising the reaction product and articles formed from therefrom are disclosed. A method of forming the reaction product is also disclosed.
Abstract:
A thermoplastic composition is disclosed, comprising the reaction product of: a polyester polycarbonate comprising a polyester unit and a polycarbonate unit; a polysiloxane polycarbonate copolymer having a haze of 30% or less, comprising a polycarbonate unit and a polysiloxane unit; and a transesterification catalyst. The resulting thermoplastic composition has a haze of 30% or less as measured according to ASTM D1003-00 at a thickness of 3.2 millimeters. A method of forming the composition and articles formed from the composition are also disclosed.
Abstract:
Articles made from a thermoplastic resin composition comprising a high modulus fiber and a resorcinol polyester or resorcinol polyester carbonate resin showing high strength and stiffness along with surprisingly good retention of gloss and color when exposed to weathering.
Abstract:
A method is provided for making polycarbonates utilizing an effective amount of a binary phase transfer catalyst, such as tetrabutylammonium bromide and a methyl tertiary amine as a condensation catalyst during the interfacial phosgenation of a bisphenol, such as bisphenol A. Improved phosgene utilization is achieved.
Abstract:
Improved blends of polyetherimide/liquid crystalline polymer are provided. The blends are obtained by melt blending amine terminated polyetherimide resin with liquid crystalline polyester resins and exhibit improved levels of tensile strength compared to blends of phthalic anhydride capped polyetherimide resin with liquid crystalline polyester resin. The blends are useful as molding compositions.
Abstract:
Polycarbonate resins are chain-terminated with a group selected from those of the formula: ##STR1## wherein R.sub.1, R.sub.2 and R.sub.3 are each independently selected from the group consisting of hydrogen, halogen, hydrocarbyl of from 1 to 12 carbon atoms, inclusive; and halogen-substituted hydrocarbyl of 1 to 12 carbon atoms, inclusive; R.sub.1 is attached to a ring carbon atom at one of the 4, 5 or 6 positions; and R.sub.2 and R.sub.3 when taken together represent the divalent moiety of formula: --CH.dbd.CH.sub.2 --CH.sub.2 .dbd.CH--which effectively creates an additional fused aromatic ring structure. The resins exhibit a low plate-out when processed thermally.
Abstract:
Polyphenylene ether-polyester copolymers, useful for compatibilizing blends of polyphenylene ethers with polyesters such as poly(alkylene terephthalates), are prepared by heating a polyphenylene ether with a polyester containing olefinic structural units, such as those derived from maleic or fumaric acid.
Abstract:
Polycarbonate resins are chain-terminated with a group selected from those of the formula: ##STR1## wherein R.sub.1, R.sub.2 and R.sub.3 are each independently selected from the group consisting of hydrogen, halogen, hydrocarbyl of from 1 to 12 carbon atoms, inclusive; and halogen-substituted hydrocarbyl of 1 to 12 carbon atoms, inclusive; R.sub.1 is attached to a ring carbon atom at one of the 4, 5 or 6 positions; and R.sub.2 and R.sub.3 when taken together represent the divalent moiety of formula:--CH.dbd.CH.sub.2 --CH.sub.2 .dbd.CH--which effectively creates an additional fused aromatic ring structure. The resins exhibit a low plate-out when processed thermally.
Abstract:
Novel compositions comprising a high concentration of one or more extended chain homopolymer, copolymer, or block polymer and certain polyphosphoric acids are prepared. Such compositions are optically anisotropic (liquid crystalline), capable of exhibiting excellent cohesive strength, and are especially suited to the production of high molecular weight ordered polymer fibers by dry-jet wet spinning. These liquid crystalline compositions are capable of being drawn through long air gap distances and spun at exceptionally high spin draw ratios. Fibers, films and other articles formed from these liquid crystalline compositions exhibit exceptionally high physical and heat resistant properties.