Abstract:
A sensing device with an odd-symmetry grating projects near-field spatial modulations onto a closely spaced photodetector array. Due to physical properties of the grating, the spatial modulations are in focus for a range of wavelengths and spacings. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. Used in conjunction with a converging optical element, versions of these gratings provide depth information about objects in an imaged scene. This depth information can be computationally extracted to obtain a depth map of the scene.
Abstract:
A sensing device projects near-field spatial modulations onto a closely spaced photodetector array. Due to physical properties of the grating, the point-spread response distributes spatial modulations over a relatively large area on the array. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. An image-change detector incorporating such a sensing device uses very little power because only a small number of active pixels are required to cover a visual field.
Abstract:
A sensing device with an odd-symmetry grating projects near-field spatial modulations onto a closely spaced photodetector array. Due to physical properties of the grating, the spatial modulations are in focus for a range of wavelengths and spacings. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. Used in conjunction with a converging optical element, versions of these gratings provide depth information about objects in an imaged scene. This depth information can be computationally extracted to obtain a depth map of the scene.
Abstract:
A sensing device with an odd-symmetry grating projects near-field spatial modulations onto a closely spaced photodetector array. Due to physical properties of the grating, the spatial modulations are in focus for a range of wavelengths and spacings. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. Used in conjunction with a converging optical element, versions of these gratings provide depth information about objects in an imaged scene. This depth information can be computationally extracted to obtain a depth map of the scene.
Abstract:
An imaging system with a diffractive optic captures an interference pattern responsive to light from an imaged scene to represent the scene in a spatial-frequency domain. The sampled frequency-domain image data has properties that are determined by the point-spread function of diffractive optic and characteristics of scene. An integrated processor can modified the sampled frequency-domain image data responsive to such properties before transforming the modified frequently-domain image data into the pixel domain.
Abstract:
An infrared imaging system includes a phase grating overlying a two-dimensional array of thermally sensitive pixels. The phase grating comprises a two-dimensional array of identical subgratings that define a system of Cartesian coordinates. The subgrating and pixel arrays are sized and oriented such that the pixels are evenly distributed with respect to the row and column intersections of the subgratings. The location of each pixel thus maps to a unique location beneath a virtual archetypical subgrating.
Abstract:
A sensing device with an odd-symmetry grating projects near-field spatial modulations onto an array of closely spaced pixels. Due to physical properties of the grating, the spatial modulations are in focus for a range of wavelengths and spacings. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. Pixels responsive to infrared light can be used to make thermal imaging devices and other types of thermal sensors. Some sensors are well adapted for tracking eye movements, and others for imaging barcodes and like binary images. In the latter case, the known binary property of the expected images can be used to simplify the process of extracting image data.
Abstract:
Binocular depth-perception systems use binary, phase-antisymmetric gratings to cast point-source responses onto an array of photosensitive pixels. The gratings and arrays can be manufactured to tight tolerances using well characterized and readily available integrated-circuit fabrication techniques, and can thus be made small, cost-effective, and efficient. The gratings produce point-source responses that are large relative to the pitch of the pixels, and that exhibit wide ranges of spatial frequencies and orientations. Such point-source responses make it easy to distinguish the point-source responses from fixed-pattern noise the results from spatial frequencies of structures that form the array.
Abstract:
An imaging system includes a phase grating overlying a two-dimensional array of pixels, which may be thermally sensitive pixels for use in infrared imaging. The phase grating comprises a two-dimensional array of identical subgratings that define a system of Cartesian coordinates. The subgrating and pixel arrays are sized and oriented such that the pixels are evenly distributed with respect to the row and column intersections of the subgratings. The location of each pixel thus maps to a unique location beneath a virtual archetypical subgrating. Portions of the phase grating extend beyond the edges of the pixels array to interference pattern in support of Fourier-domain imaging.
Abstract:
Image-sensing devices include odd-symmetry gratings that cast interference patterns over a photodetector array. Grating features offer considerable insensitivity to the wavelength of incident light, and also to the manufactured distance between the grating and the photodetector array. Photographs and other image information can be extracted from interference patterns captured by the photodetector array. Images can be captured without a lens, and cameras can be made smaller than those that are reliant on lenses and ray-optical focusing.