Abstract:
A holographic display apparatus and a hologram optimization method for the apparatus are provided. The holographic display apparatus includes a focus-forming optical element configured to form a plurality of foci by receiving plane waves; a collimating lens configured to propagate, as plane waves, light incident through the plurality of foci; and a spatial light modulator configured to generate a holographic image by overlapping a plurality of plane waves incident from the collimating lens.
Abstract:
Apparatus and methods for coherent diffractive imaging with arbitrary angle of illumination incidence utilize a method of fast remapping of a detected diffraction intensity pattern from a detector pixel array (initial grid) to a uniform spatial frequency grid (final grid) chosen to allow for FFT on the remapped pattern. This is accomplished by remapping the initial grid to an intermediate grid chosen to result in a final grid that is linear in spatial frequency. The initial grid is remapped (generally by interpolation) to the intermediate grid that is calculated to correspond to the final grid. In general, the initial grid (x,y) is uniform in space, the intermediate grid ({tilde over (x)},{tilde over (y)}) is non-uniform in spatial frequency, and the final grid ({tilde over (f)}x,{tilde over (f)}y) is uniform in spatial frequency.
Abstract:
When the optical system is illuminated with an illumination light flux emitted from one extant input image point, an interference image generated by superimposing an extant output light flux output from the optical system and a reference light flux coherent with the extant output light flux is imaged to acquire interference image data, and thus to acquire measured phase distribution, and this acquisition operation is applied to each extant input image point. Thus, each measured phase distribution is expanded by expanding functions μn(u, v) having coordinates (u, v) on a phase defining plane as a variable to be represented as a sum with coefficients Σn{Ajn·μn(u, v)}. When the optical system is illuminated with a virtual illumination light flux, a phase Ψ(u, v) of a virtual output light flux is determined by performing interpolation calculation based on coordinates of a virtual light emitting point.
Abstract:
The invention relates to a system (1) for observing objects, including: a light source (3), a holder (12) able to receive a translucent or opaque substrate, a detector (7) able to collect the backscattered light from the interaction between the light emitted by light source (3) and the objects, a polarization splitter (9), and a quarter-wave plate (10), the splitter (9) and the quarter-wave plate (10) being arranged so that the splitter (9) directs the light emitted by the light source (3) toward the solid substrate and directs the backscattered light from the interaction between the light emitted by the light source (3) and the objects toward the detector (7).
Abstract:
The present invention can realize both a transmission type and a reflection type, and provides a holographic microscope which can exceed the resolution of the conventional optical microscope, a hologram data acquisition method for a high-resolution image, and a high-resolution hologram image reconstruction method. In-line spherical wave reference light (L) is recorded in a hologram (ILR) using spherical wave reference light (R), and an object light (Oj) and an illumination light (Qj) are recorded in a hologram (IjOQR) using a spherical wave reference light (R) by illuminating the object with an illumination light (Qj, j=1, . . . , N) which is changed its incident direction. From those holograms, a hologram (JjOQL), from which the component of the reference light (R) is removed, is generated, and from the hologram, a light wave (hj) is generated. A light wave (cj) of the illumination light (Qj) is separated from the light wave (hj), and using its phase component (ξj=cj/|cj|), a phase adjustment reconstruction light wave is derived and added up as (HP=Σhj/ξj), and an object image (SP=|HP|2) is reconstructed.
Abstract translation:本发明可以实现透射型和反射型,并且提供可以超过常规光学显微镜的分辨率的全息显微镜,用于高分辨率图像的全息图数据获取方法和高分辨率全息图像重构 方法。 使用球面波参考光(R)将球面波参考光(L)记录在全息图(ILR)中,并且将目标光(Oj)和照明光(Qj)记录在全息图(IjOQR)中,使用 通过以改变其入射方向的照明光(Qj,j = 1,...,N)照亮物体的球面波参考光(R)。 从这些全息图中,产生去除了参考光(R)的分量的全息图(JjOQL),并且从全息图产生光波(hj)。 照明光(Qj)的光波(cj)与光波(hj)分离,使用其相位分量(ξj= cj / | cj |),导出相位调整重建光波,并相加为 (HP =Σhj/ξj),并且重建对象图像(SP = | HP | 2)。
Abstract:
A laser beam (L50) generated by a laser light source (50) is reflected by a light beam scanning device (60), and irradiated onto a hologram recording medium (45). On the hologram recording medium (45), an image (35) of a scatter plate is recorded as a hologram by using reference light that converges on a scanning origin (B). The light beam scanning device (60) bends the laser beam (L50) at the scanning origin (B) and irradiates it onto the hologram recording medium (45). At this time, scanning is carried out by changing the bending mode of the laser beam with time so that the irradiation position of the bent laser beam (L60) on the hologram recording medium (45) changes with time. Regardless of the beam irradiation position, diffracted light (L45) from the hologram recording medium (45) reproduces the same reproduction image (35) of the scatter plate at the same position. An illumination spot in which speckles are reduced is formed on the light receiving surface (R) of an illuminating object (70) by the reproduction image (35) of the hologram.
Abstract:
Provided is an observation device which can obtain a phase image of a moving object rapidly with high sensitivity even when using a photodetector having a slow read-out speed per pixel. The observation device 1 comprises a light source 10, a first modulator 20, a second modulator 30, a lens 40, a beam splitter 41, a photodetector 46, and an arithmetic unit 50. The lens 40 receives scattered light generated by a moving object 2 and forms a Fourier transform image of the object 2. The photodetector 46 outputs data representing a sum in a v direction of data temporally changing at a frequency corresponding to a Doppler shift frequency of the light having reached each position on a light-receiving surface through the lens 40 at each position in a u direction at each time. The arithmetic unit 50 obtains an image of the object 2 according to the output of the photodetector 46.
Abstract:
A system for motility contrast imaging a biological target within tissue comprising a CCD array; an illumination source for generating an incoming beam; a first beam splitter for receiving the incoming beam and producing an object beam and a reference beam; a second beam splitter for illuminating a multitude of biological targets with the object beam and for directing backscattered object beams towards the CCD array; a computer-controlled delay stage for zero-path-matching the reference beam to the backscattered object beams; a reference beam that intersects the backscattered object beams at an angle to produce a series of interference fringes that modulate Fourier-domain information; and a computer for receiving a time series of Fourier-domain information. The interference fringes between the backscattered object beam and the reference beam are recorded by the CCD array and passed to the computer which constructs a digital hologram at successive times.
Abstract:
A hologram projecting system includes a coherent light source for emitting a reference beam onto a real object; and an image sensor for receiving the reference beam and a scattered beam reflected from the real object, and recording a Fourier image of the real object. Also included is a modulator for receiving the Fourier image. The reference beam is passed through the modulator, and configured to interact with the Fourier image to form a virtual image of the real object. The image sensor includes an n×m pixel array, where n and m are numbers of rows and columns, respectively. The modulator includes an n×m pixel array corresponding to the n×m pixel array of the image sensor. The pixels in the n×m pixel array of the image sensor control transmissivity of light in corresponding pixels of the n×m pixel array of the modulator.
Abstract:
A device in holographic imaging comprises: at least two light sources, wherein each of the at least two light sources is arranged to output light of a unique wavelength; and at least one holographic optical element, wherein the at least two light sources and the at least one holographic optical element are arranged in relation to each other such that light from the at least two light sources incident on the at least one holographic optical element interacts with the at least one holographic optical element to form wavefronts of similar shape for light from the different light sources.