Abstract:
Described are imaging systems that employ diffractive structures as focusing optics optimized to detect visual edges (e.g., slits or bars). The diffractive structures produce edge responses that are relatively insensitive to wavelength, and can thus be used to precisely measure edge position for panchromatic sources over a wide angle of view. Simple image processing can improve measurement precision. Field-angle measurements can be made without the aid of lenses, or the concomitant cost, bulk, and complexity.
Abstract:
Pixel circuits in an image sensor are sampled repetitively during an image frame period. At each sampling, a signal indicative of the photocharge integrated by a pixel circuit since last reset is compared to a threshold. If the integrated photocharge signal has not reached the threshold, the pixel circuit is permitted to continue integrating photocharge. If the integrated photocharge signal has reached the threshold, the pixel circuit is reset to remove integrated photocharge and photocharge integration for that pixel circuit is restarted. A corresponding pixel circuit value is recorded for the reset pixel circuit.
Abstract:
An array of diffraction-pattern generators employ phase anti-symmetric gratings to projects near-field spatial modulations onto a closely spaced array of photoelements. Each generator in the array of generators produces point-spread functions with spatial frequencies and orientations of interest. The generators are arranged in an irregular mosaic with little or no short-range repetition. Diverse generators are shaped and placed with some irregularity to reduce or eliminate spatially periodic replication of ambiguities to facilitate imaging of nearby scenes.
Abstract:
In an integrated-circuit image sensor, binary sample values are read out from an array of pixels after successive sampling intervals that collectively span an image exposure interval and include at least two sampling intervals of unequal duration. Each pixel of the array is conditionally reset after each of the successive sampling intervals according to whether the pixel yields a binary sample in a first state or a second state.
Abstract:
A sensing device projects near-field spatial modulations onto a closely spaced photodetector array. Due to physical properties of the grating, the point-spread response distributes spatial modulations over a relatively large area on the array. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. An image-change detector incorporating such a sensing device uses very little power because only a small number of active pixels are required to cover a visual field.
Abstract:
Pixel circuits in an image sensor are sampled repetitively during an image frame period. At each sampling, a signal indicative of the photocharge integrated by a pixel circuit since last reset is compared to a threshold. If the integrated photocharge signal has not reached the threshold, the pixel circuit is permitted to continue integrating photocharge. If the integrated photocharge signal has reached the threshold, the pixel circuit is reset to remove integrated photocharge and photocharge integration for that pixel circuit is restarted. A corresponding pixel circuit value is recorded for the reset pixel circuit.
Abstract:
In an integrated-circuit image sensor, binary sample values are read out from an array of pixels after successive sampling intervals that collectively span an image exposure interval and include at least two sampling intervals of unequal duration. Each pixel of the array is conditionally reset after each of the successive sampling intervals according to whether the pixel yields a binary sample in a first state or a second state.
Abstract:
An array of diffraction-pattern generators employ phase anti-symmetric gratings to projects near-field spatial modulations onto a closely spaced array of photoelements. Each generator in the array of generators produces point-spread functions with spatial frequencies and orientations of interest. The generators are arranged in an irregular mosaic with little or no short-range repetition. Diverse generators are shaped and placed with some irregularity to reduce or eliminate spatially periodic replication of ambiguities to facilitate imaging of nearby scenes.
Abstract:
Described are imaging systems that employ diffractive structures as focusing optics optimized to detect visual edges (e.g., slits or bars). The diffractive structures produce edge responses that are relatively insensitive to wavelength, and can thus be used to precisely measure edge position for panchromatic sources over a wide angle of view. Simple image processing can improve measurement precision. Field-angle measurements can be made without the aid of lenses, or the concomitant cost, bulk, and complexity.
Abstract:
A sensing device projects near-field spatial modulations onto a closely spaced photodetector array. Due to physical properties of the grating, the point-spread response distributes spatial modulations over a relatively large area on the array. The spatial modulations are captured by the array, and photographs and other image information can be extracted from the resultant data. An image-change detector incorporating such a sensing device uses very little power because only a small number of active pixels are required to cover a visual field.