摘要:
A method of and a system for automatic object display of volumetric CT data for fast on-screen threat resolution are disclosed, wherein the CT data includes a CT image in a single energy CT scanner, or a CT image and a Z image in a multi-energy CT scanner, and a label image defining each object as a plurality of voxels of the volumetric CT data. The method comprises generating volumetric CT image data corresponding to a scanned bag; performing automatic threat detection to generate a label image; processing the volumetric CT data and the label image to obtain visualization parameters for each object; automatically generating display images for each object using corresponding visualization parameters; and displaying the generated display images for on-screen threat resolution.
摘要:
Potential threat items may be concealed inside objects, such as portable electronic devices, that are subject to imaging for example, at a security checkpoint. Data from an imaged object can be compared to pre-determined object data to determine a class for the imaged object. Further, an object can be identified inside a container (e.g., a laptop inside luggage). One-dimensional Eigen projections can be used to partition the imaged object into partitions, and feature vectors from the partitions and the object image data can be used to generate layout feature vectors. One or more layout feature vectors can be compared to training data for threat versus non-threat-containing items from the imaged object's class to determine if the imaged object contains a potential threat item.
摘要:
A system for iteratively reconstructing computed tomography images through three domains is disclosed. The system comprises a raw domain processor, a projection domain processor, and an image domain processor. The system also comprises two iterative loops: one is through a raw synthesizer connecting the raw domain processor and the projection domain processor, and the other is through a projection synthesizer connecting the projection domain processor and the image domain processor respectively.
摘要:
A system for iteratively reconstructing computed tomography images through three domains is disclosed. The system comprises a raw domain processor, a projection domain processor, and an image domain processor. The system also comprises two iterative loops: one is through a raw synthesizer connecting the raw domain processor and the projection domain processor, and the other is through a projection synthesizer connecting the projection domain processor and the image domain processor respectively.
摘要:
An apparatus for detecting X-rays and converting the detected X-ray intensities into digital signals is disclosed. The apparatus places Analog to Digital Conversion (ADC) chips directly under a scintillator array along the X-ray beam direction and uses a shield that is placed between a photodiode substrate and an Analog to Digital Conversion (ADC) chip to block X-rays from directly reaching the dies of the ADC chips, which are sensitive to X-rays. Also an X-ray CT system utilizing the disclosed apparatus for detecting X-rays is provided.
摘要:
An Adjustable Photon Detection System (APDS) for multi-slice X-ray CT systems and a multi-slice X-ray CT system using the APDS are disclosed; wherein the APDS can be adjusted to be aligned to different X-ray source positions; wherein the multi-slice X-ray CT system comprises one or more X-ray sources, and one or more APDS; wherein the multi-slice X-ray CT system may also include a detector position calculator for calculating effective detector positions and a detector position corrector for correcting projection data using calculated effective detector positions.
摘要:
Potential threat items may be concealed inside objects, such as portable electronic devices, that are subject to imaging for example, at a security checkpoint. Data from an imaged object can be compared to pre-determined object data to determine a class for the imaged object. Further, an object can be identified inside a container (e.g., a laptop inside luggage). One-dimensional Eigen projections can be used to partition the imaged object into partitions, and feature vectors from the partitions and the object image data can be used to generate layout feature vectors. One or more layout feature vectors can be compared to training data for threat versus non-threat-containing items from the imaged object's class to determine if the imaged object contains a potential threat item.
摘要:
A method of and a system for displaying volumetric data on a 2D or 3D display are provided. In particular, a method of highlighting objects using contours of selected objects on a 2D display and on a 3D stereoscopic display is provided. The contour highlighting method provides users an attention cue of highlighted objects while preserves the details of objects to be observed. The applications of the 3D display workstation for security luggage screening and for medical diagnosis and surgical planning are also provided.
摘要:
An Adjustable Photon Detection System (APDS) for multi-slice X-ray CT systems and a multi-slice X-ray CT system using the APDS are disclosed; wherein the APDS can be adjusted to be aligned to different X-ray source positions; wherein the multi-slice X-ray CT system comprises one or more X-ray sources, and one or more APDS; wherein the multi-slice X-ray CT system may also include a detector position calculator for calculating effective detector positions and a detector position corrector for correcting projection data using calculated effective detector positions.
摘要:
A method of and a system for detecting anomalies in projection images generated by CT scanners are provided. One type of anomaly of particular interest is bright or/and dark dots in projection images, which correspond to streak artifacts in the CT images. The method for detecting such bright or/and dark dots in projection images comprises: generating projection images; computing a CFAR distance map; computing a preliminary dot map; generating dot histograms; and detecting bright dots or/and dark dots based on the generated histograms.