摘要:
A storage device structure (10) has two bits of storage per control gate (34) and uses source side injection (SSI) to provide lower programming current. A control gate (34) overlies a drain electrode formed by a doped region (22) that is positioned in a semiconductor substrate (12). Two select gates (49 and 50) are implemented with conductive sidewall spacers adjacent to and lateral to the control gate (34). A source doped region (60) is positioned in the semiconductor substrate (12) adjacent to one of the select gates for providing a source of electrons to be injected into a storage layer (42) underlying the control gate. Lower programming results from the SSI method of programming and a compact memory cell size exists.
摘要:
A storage cell includes a semiconductor substrate defining a trench, a bottom dielectric lining the trench, and a charge storage layer on the bottom dielectric. The charge storage layer includes a plurality of discontinuous storage elements (DSEs). A control gate and a top dielectric cover the DSEs. The storage cell includes a source/drain region underlying the trench. The DSEs may be silicon nanocrystals and the control gate may be polysilicon. The control gate may be recessed below an upper surface of the semiconductor substrate and an upper most of the DSEs may be vertically aligned with the control gate upper surface. The storage cell may include an oxide gap structure laterally aligned with the silicon nanocrystals adjacent the trench sidewall and extending vertically from the upper most of the silicon nanocrystals to the upper surface of the substrate. The DSEs include at least programmable two injection regions.
摘要:
A memory charge storage device has regions of sacrificial material overlying a substrate (12). For each memory cell a first doped region (20) and a second doped region (24) are formed within the substrate and on opposite sides of one (16) of the regions of sacrificial material. A discrete charge storage layer (28) overlies the substrate and is between the regions of sacrificial material. In one form a control electrode (34) is formed per memory cell overlying the substrate with an underlying substrate diffusion and laterally adjacent one of the regions of sacrificial material. A third substrate diffusion (60) is positioned between the two control electrodes. In another form two control electrodes are formed per memory cell with a substrate diffusion underlying each control electrode. In both forms a select electrode (64) overlies and is between both of the two control electrodes.
摘要:
A non volatile memory (100) includes an array (102) of transistors (30) having discrete charge storage elements (40). The transistors are programmed by using a two step programming method (60) where a first step (68) is hot carrier injection (HCI) programming with low gate voltages. A second step (78) is selectively utilized on some memory cells to modify the injected charge distribution to enhance the separation of charge distribution between each memory bit within the transistor memory cell. The second step of programming is implemented without adding significant additional time to the programming operation. In one example, the first step injects electrons and the second step injects holes. The resulting distribution of the two steps removes electron charge in the central region of the storage medium.