Abstract:
A slurry catalytic hydroconversion process comprising at least two hydroconversion zones is provided in which the heavy hydrocarbonaceous fresh oil feed is added to more than one hydroconversion zone. Additional portions of catalysts or catalyst precursors are also added to the first hydroconversion zone and to additional hydroconversion zones wherein said additional hydroconversion zones are maintained at a temperature of at least 10.degree. F. higher than an immediate preceding hydroconversion zone.
Abstract:
A catalyst comprising a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area metal or metal alloy support is provided. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.
Abstract:
A process for catalytically hydroconverting a mixture of coal and a hydrocarbonaceous oil is effected by forming a mixture of a thermally decomposable metal compound, oil and coal, converting the compound to a catalyst within the mixture and reacting the mixture with hydrogen. Preferred compounds are molybdenum compounds.
Abstract:
A catalyst is provided which comprises a composition comprising a catalytic metal component, carbon and hydrogen deposited on a low surface area aluminum alloy powder support prepared by atomizing the metal alloy. Hydrocarbon treating and conversion processes utilizing the catalyst are also provided. The catalyst is particularly suitable for slurry processes.
Abstract:
A catalytic hydrocracking process for a hydrocarbonaceous oil is effected by dispersing a thermally decomposable metal compound in the oil, heating the compound in the presence of a hydrogen-containing gas to form a solid, non-colloidal catalyst within the oil and reacting the oil containing the catalyst with hydrogen. Preferred thermally decomposable compound are molybdenum compounds.
Abstract:
A coal liquefaction chargestock is first treated with a gaseous mixture comprising at least 5 mole percent hydrogen sulfide at a temperature varying from about 343.degree. C. to about 449.degree. C. for at least 8 minutes and thereafter subjected to coal liquefaction conditions.
Abstract:
Heavy petroleum oils, preferably whole crude or residua, are desulfurized and upgraded by contacting the petroleum oil with sodium oxide in the presence of hydrogen at elevated temperatures. The resulting mixture comprising desulfurized petroleum oil and a dispersion of sodium salts, primarily sodium sulfide and sodium hydroxide, is separated by conventional means and sodium oxide is regenerated from the salts.
Abstract:
Heavy carbonaceous feeds, including various sulfur-containing heavy petroleum oils, are simultaneously desulfurized and subjected to hydroconversion by contacting these feedstocks with alkali metal oxides in a conversion zone maintained at elevated temperatures and in the presence of hydrogen. In this manner, the feeds are substantially desulfurized, and significant upgrading of the feedstocks is also obtained as demonstrated by decreased Conradson carbon, increased API gravity, and conversion of a substantial portion of the 1,050.degree. F+ portion of the feedstream. In addition, methods for the regeneration of the alkali metal oxides from the alkali metal sulfide salts produced in the reaction zone are disclosed.
Abstract:
The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
Abstract:
The invention relates to an integrated, continuous process for the removal of organically bound sulfur (e.g., mercaptans, sulfides and thiophenes) comprising the steps of contacting a heavy oil, sodium hydroxide, hydrogen and water at a temperature of from about 380.degree. C. to 450.degree. C. to partially desulfurize the heavy oil and to form sodium sulfide, contacting said sodium sulfide with a transition metal in water to form a transition metal sulfide, sodium hydroxide and hydrogen. The sodium hydroxide is recirculated and the transition metal sulfide is removed. The partially desulfurized, dewatered heavy oil is treated with sodium metal under desulfurizing conditions, typically at a temperature of from about 340.degree. C. to about 450.degree. C., under a hydrogen pressure of at least about 50 psi to essentially desulfurize the oil, and form sodium sulfide. Optionally, the sodium salt generated can be regenerated to sodium metal using regeneration technology. The process advantageously produces essentially sulfur-free product oils having reduced nitrogen, oxygen and metals contents and reduced viscosity, density, molecular weight and heavy ends.