Abstract:
Carbonaceous feeds such as hydrocarbonaceous oils and coal are hydroconverted in the presence of a combination of a hydrogen halide and a metal-containing catalyst produced in situ in the feed. The hydrogen halide is present in an amount to provide from about 0.1 to 20 moles of hydrogen halide per atom of the metal constituent of the catalyst to increase the activity of the catalyst.
Abstract:
A process for the simultaneous desulfurization and hydroconversion of heavy carbonaceous feeds, including various sulfur-containing heavy petroleum oils, is disclosed. These feedstocks are contacted with potassium sulfide in a conversion zone maintained at elevated temperatures and in the presence of added hydrogen. In this manner, the feeds are substantially desulfurized, and significant upgrading of these feeds is also obtained as demonstrated by decreased Conradson carbon, increased API gravity, and the conversion of substantial portion of the 1,050.degree. F.+ portion of these feeds. In a preferred embodiment, such a process is disclosed employing a combination of potassium sulfide and sodium sulfide, and in particular these processes include procedures for the regeneration of the sulfides and their recycle to the conversion zone.
Abstract:
A heavy hydrocarbonaceous oil is converted to lower boiling products by treatment with hydrogen in the presence of a particulate acidic copper chloride catalyst.
Abstract:
Processes for the treating of sulfur-containing petroleum oil feedstocks employing alkali metal compounds, alkaline earth metal compounds, and mixtures thereof are disclosed. Specifically, processes for hydrotreating feedstocks which have been previously partially desulfurized using conventional hydrodesulfurization catalysts by contacting such feedstocks with alkali metal compounds, alkaline earth metal compounds, and mixtures thereof, are disclosed. Preferably, the products of such a treatment are employed as feeds for catalytic cracking processes. In addition, processes for the combined hydrotreating and hydroconversion of various sulfur-containing petroleum oil feeds are disclosed, employing at least two hydroconversion agents selected from the group consisting of the alkali metal compounds and alkaline earth metal compounds, in the presence of added hydrogen, and at elevated temperatures. The reaction products formed thereby include a substantially desulfurized and demetallized, as well as a significantly upgraded petroleum product. The latter is demonstrated by a reduced Conradson carbon content and an increased API gravity.
Abstract:
Nitrogen-containing carbonaceous feeds such as hydrocarbonaceous oils and coal are hydroconverted in the presence of a solid vanadium-containing catalyst and a hydrogen halide.
Abstract:
Processes for the simultaneous desulfurization and hydroconversion of heavy carbonaceous feeds, including various sulfur-containing heavy petroleum oils, are disclosed. These feeds are contacted with alkali metal hydroxides in a conversion zone, in the presence of added hydrogen, and at elevated temperatures, whereby the feeds are substantially desulfurized, while at the same time significant upgrading of these feedstocks is obtained as demonstrated by decreased Conradson carbon, increased API gravity, and the conversion of a substantial portion of the 1,050.degree. F+ portion of the feedstream. In addition, methods for the regeneration of alkali metal hydroxides from the alkali metal salts produced in the conversion zone are disclosed.
Abstract:
Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
Abstract:
After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
Abstract:
Heavy carbonaceous feeds, including various sulfur-containing heavy petroleum oils, are simultaneously desulfurized and subjected to hydroconversion by contacting these feedstocks with alkali metal oxides in a conversion zone maintained at elevated temperatures and in the presence of hydrogen. In this manner, the feeds are substantially desulfurized, and significant upgrading of the feedstocks is also obtained as demonstrated by decreased Conradson carbon, increased API gravity, and conversion of a substantial portion of the 1,050.degree. F+ portion of the feedstream. In addition, methods for the regeneration of the alkali metal oxides from the alkali metal sulfide salts produced in the reaction zone are disclosed.
Abstract:
Sulfur-containing petroleum oil feedstocks which include heavy hydrocarbon constituents undergo simultaneous desulfurization and hydroconversion by contacting and reacting such feedstocks with sodamide in the presence of hydrogen and at elevated temperatures. The mixture of reaction products resulting from the above procedure is separated to give a sodium sulfur salt by-product, and a petroleum oil product which has been substantially desulfurized and demetallized, as well as being significantly improved as indicated by a reduced Conradson carbon content and an increased API gravity relative to the feedstock. Sodamide is regenerated from the sodium sulfur salt by-product and can be recycled for reaction with additional feedstock.