Abstract:
For use in a wireless network, a method for supporting a Machine-Type Communication (MTC) User Equipment (UE) is provided. The method comprises transmitting an MTC-specific Master Information Block (M-MIB) carrying information specific to a User Equipment (UE), via a MTC Physical Broadcast Channel (M-PBCH) to the MTC UE. The M-PBCH is transmitted in a M-PBCH subframe being different from a Physical Broadcast Channel (PBCH) subframe in which a PBCH is transmitted.
Abstract:
A method and apparatus report channel state information (CSI) feedback of a user equipment (UE) in a coordinated multipoint communication system. The method includes identifying, when downlink transmissions to the UE are configured with at least two CSI subframe subsets, an interference measurement resource within one of the CSI subframe subsets belonging to a CSI reference resource. The method also includes using the identified interference measurement resource to derive an interference measurement. The apparatus includes a controller configured to, when downlink transmissions to the UE are configured with at least two CSI subframe subsets, identify an interference measurement resource within one of the CSI subframe subsets belonging to a CSI reference resource. The controller is configured to use the identified interference measurement resource to derive an interference measurement.
Abstract:
Coordinate multi-point (CoMP) transmission is facilitated by resolving collisions between feedback reporting. Based upon the conditions within the network, collision resolution may be by dropping a channel report during a subframe, multiplexing channel reports from a plurality of user equipment, compressing channel reports a plurality of user equipment, and combined reporting, either through joint reports or by using carrier aggregation, for conditions between a user equipment and a plurality of transmission points. New signaling and reporting formats facilitate selection of a collision resolution suitable for current network conditions.
Abstract:
Coordinate multi-point (CoMP) transmission is facilitated by resolving collisions between feedback reporting. Based upon the conditions within the network, collision resolution may be by dropping a channel report during a subframe, multiplexing channel reports from a plurality of user equipment, compressing channel reports from a plurality of user equipment, and combined reporting, either through joint reports or by using carrier aggregation, for conditions between a user equipment and a plurality of transmission points. New signaling and reporting formats facilitate selection of a collision resolution suitable for current network conditions.
Abstract:
A user equipment (UE) in a wireless network having two-dimensional antenna systems performs a method of codebook sampling. The method includes receiving from an eNodeB (eNB) an indication of a restricted subset M of vertical precoding matrices, wherein M is less than a total number of vertical precoding matrices N in a codebook, the codebook comprising a plurality of vertical precoding matrices and horizontal precoding matrices. The method also includes feeding back vertical precoding matrix indicators (V-PMI) to the eNB based on the restricted subset of vertical precoding matrices.
Abstract:
Methods and apparatuses determine and indicate QCL behavior for or to a UE. A method for determining QCL behavior for the UE method includes, when configured in TM10 for a serving cell, determining whether a CRC for a PDSCH transmission scheduled by DCI format 1A is scrambled using a C-RNTI. The method also includes, in response to determining C-RNTI scrambling, determining whether a transmission scheme of the PDSCH transmission uses a non-MBSFN subframe configuration and whether the PDSCH transmission is transmitted on antenna port 0 or a TxD scheme is used. The method further includes, in response to determining the non-MBSFN subframe configuration and antenna port 0 or the TxD scheme being used, determining to use QCL behavior 1 for PDSCH reception. Additionally, the method includes, in response to determining a MBSFN subframe configuration and antenna port 7 being used, determining to use QCL behavior 2 for PDSCH reception.
Abstract:
A method for CSI report transmission includes detecting a collision in a subframe, between a first PUCCH CSI report of one serving cell with which a UE is configured in one of transmission modes 1 to 9, and a second PUCCH CSI report of another serving cell with which the UE is configured in transmission mode 10. Upon the reporting types of the collided PUCCH CSI reports having a same priority, the method transmits the first PUCCH CSI report if the CSI process index of the second PUCCH CSI report has a positive value other than 1. A method for CSI report transmission includes configuring, via a higher layer, a UE configured in transmission mode 10 whether to create a respective CSI report(s) for each aperiodic CSI process or not, using an information element including at least three one-bit variables.
Abstract:
Coordinate multi-point (CoMP) transmission is facilitated by resolving collisions between feedback reporting. Based upon the conditions within the network, collision resolution may be by dropping a channel report during a subframe, multiplexing channel reports from a plurality of user equipment, compressing channel reports from a plurality of user equipment, and combined reporting, either through joint reports or by using carrier aggregation, for conditions between a user equipment and a plurality of transmission points. New signaling and reporting formats facilitate selection of a collision resolution suitable for current network conditions.
Abstract:
Orthogonal multi-user, multiple input, multiple output (MU-MIMO) multiplexing capacity for demodulation reference signals (DMRSs) is increased without increasing the overhead in resource elements per physical resource block by using length-4 orthogonal cover codes (OCC-4). A base station switches between legacy DMRS antenna port mappings and OCC-4 mapping based upon either a transmission mode or a channel station information process configuration field value.
Abstract:
A method and an apparatus indicate and identify a ZP-CSI-RS configuration. The method for identifying includes identifying a DCI format and the ZP-CSI-RS configuration in response to receiving one or more control messages where a first set of ZP-CSI-RS configuration or configurations are configured to be used for DCI Format 1A and a second set of ZP-CSI-RS configuration or configurations are configured to be used for DCI Format 2D or 2C. The method also includes identifying a PDSCH rate matching based on the identified ZP-CSI-RS configuration. The method for indicating includes transmitting a dynamic signaling control message comprising an indication of a DCI format. The method also includes transmitting transmit a higher layer signaling control message comprising an indication of the ZP-CSI-RS configuration or configurations.