Abstract:
An object is to provide a new fluorene derivative as a good light-emitting material for organic EL elements. A fluorene derivative represented by General Formula (G1) is provided. In the formula, R1 to R8 separately represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted phenyl group, or a substituted or unsubstituted biphenyl group. Further, α1 to α4 separately represent a substituted or unsubstituted phenylene group. Ar1 represents a substituted or unsubstituted condensed aromatic hydrocarbon having 14 to 18 carbon atoms forming a ring. Ar2 represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring. Ar3 represents an alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms. Further, j, m, and n separately represent 0 or 1, and p represents 1 or 2.
Abstract:
A composite material including an organic compound and an inorganic compound and having a high carrier-transport property is provided. A composite material having a high carrier-injection property to an organic compound is provided. A composite material in which light absorption due to charge transfer interaction is unlikely to occur is provided. A light-emitting element having high emission efficiency is provided by including the composite material. A light-emitting element having a low drive voltage is provided. A light-emitting element having a long lifetime is provided. A composite material including a heterocyclic compound having a dibenzothiophene skeleton or a dibenzofuran skeleton and an inorganic compound exhibiting an electron-accepting property with respect to the heterocyclic compound is provided.
Abstract:
Provided is a light-emitting element in which an adverse effect by halides in an EL layer is suppressed and which can be provided with low cost. The light-emitting element including at least two layers between an anode and a light-emitting layer. One of the two layers which is closer to the anode has higher concentration of halides and halogen elements than the other layer closer to the light-emitting layer.
Abstract:
A novel triarylamine compound having a bipolar property is provided. The triarylamine compound can be used for a hole-injection layer, a hole-transport layer, a light-emitting layer, or an electron-transport layer in a light-emitting element. The triarylamine compound can also be used as a host material with a light-emitting material which emits relatively short-wavelength light, in a structure where the host material and the guest material constitute a light-emitting layer. The triarylamine compound of the present invention is a fluorescent compound and therefore can also be used as a light-emitting substance of a light-emitting layer. A light-emitting element having high emission efficiency is provided. A light-emitting device, an electronic device, or a lighting device having low power consumption is provided.
Abstract:
To increase emission efficiency of a fluorescent light-emitting element by efficiently utilizing a triplet exciton generated in a light-emitting layer. The light-emitting layer of the light-emitting element includes at least a host material and a guest material. The triplet exciton generated from the host material in the light-emitting layer is changed to a singlet exciton by triplet-triplet annihilation (TTA). The guest material (fluorescent dopant) is made to emit light by energy transfer from the singlet exciton. Thus, the emission efficiency of the light-emitting element is improved.
Abstract:
An object is to provide a highly reliable display unit having a function of sensing light. The display unit includes a light-receiving device and a light-emitting device. The light-receiving device includes an active layer between a pair of electrodes. The light-emitting device includes a hole-injection layer, a light-emitting layer, and an electron-transport layer between a pair of electrodes. The light-receiving device and the light-emitting device share one of the electrodes, and may further share another common layer between the pair of electrodes. The hole-injection layer is in contact with an anode and contains a first compound and a second compound. The electron-transport property of the electron-transport layer is low; hence, the light-emitting layer is less likely to have excess electrons. Here, the first compound is the material having a property of accepting electrons from the second compound.
Abstract:
An organic compound is represented by General Formula (G1). In the formula, each of R1 to R4 independently represents any of hydrogen (including deuterium), a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and a substituent represented by General Formula (G1-1). Each of R5 to R8 independently represents any of hydrogen (including deuterium), a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, and a substituent represented by General Formula (G1-3). At least one of R5 to R8 represents a substituent represented by General Formula (G1-3).
Abstract:
A novel light-emitting device that is highly convenient, useful, or reliable is provided. An organic compound in which a substituted or unsubstituted naphtho[2,3-c]carbazolyl group or a substituted or unsubstituted benzo[c]naphtho[2,3-g]carbazolyl group is bonded to a substituted or unsubstituted 9H-carbazolyl group or a substituted or unsubstituted anthryl group through a substituted or unsubstituted arylene group. The arylene group has 6 to 13, inclusive, carbon atoms.
Abstract:
A light-emitting device with high emission efficiency is provided. The light-emitting device includes an anode, a cathode, and an EL layer positioned between the anode and the cathode. The EL layer includes a light-emitting layer and an electron-transport layer; the light-emitting layer includes a light-emitting material; the electron-transport layer includes an organic compound having an electron-transport property and a metal complex of an alkali metal; the ordinary refractive index of the organic compound having an electron-transport property in a peak wavelength of light emitted from the light-emitting material is greater than or equal to 1.50 and less than or equal to 1.75; and the ordinary refractive index of the metal complex of an alkali metal in the peak wavelength of the light emitted from the light-emitting material is greater than or equal to 1.45 and less than or equal to 1.70.
Abstract:
A novel organic compound represented by General Formula (G1) is provided. In General Formula (G1), X1 and X2 each independently represent a secondary or tertiary alkyl group having 3 to 6 carbon atoms and having a branched carbon atom which is bonded to a phenyl group. In addition, Ar1 represents a substituted or unsubstituted condensed aromatic ring skeleton having 10 to 60 carbon atoms and composed of two or more rings or a substituted or unsubstituted condensed heteroaromatic ring skeleton having 8 to 60 carbon atoms and composed of two or more rings. Furthermore, Ar2 represents a substituted or unsubstituted aryl group having 6 to 25 carbon atoms. Moreover, n represents any of 1 to 3, and in the case where n is 2 or more, two or more groups bonded to Ar1 may be identical or different.