Abstract:
Provided is a display device. The display device includes: a plurality of gate lines extending in a first direction; a plurality of data lines extending in a second direction that intersects the first direction; and a plurality of pixels connected to the gate lines and the data lines, wherein the pixels include pixels h-th row pixels (h is a natural number) and (h+1)-th row pixels, which are adjacent to each other in the second direction, with a (k+1)-th gate line (k is a natural number) therebetween among the gate lines; and a first pixel displaying a first color and connected to the (k+1)-th gate line among the h-th row pixels and a second pixel displaying the first color and connected to the (k+1)-th gate line among the (h+1)-th row pixels are spaced apart from each other in the first direction and receive different polarities of data voltages.
Abstract:
A display device includes: a display panel; a voltage generator to output a gate on voltage to a voltage output terminal; a clock generator to receive the gate on voltage to generate at least one clock signal; a gate driving circuit including a plurality of driving stages to output gate signals to gate lines in response to the at least one clock signal, each of the driving stages including at least one transistor to adjust a threshold voltage based on a back bias control voltage; and a signal controller to detect a current variation of the voltage output terminal and including a back bias controller to search for the back bias control voltage to minimize a consumption current level of the voltage output terminal while changing the back bias control voltage from a default voltage level when the detected current variation is greater than a reference level.
Abstract:
A display apparatus includes a thin film transistor substrate, a gate driver, and a connection line. The thin film transistor substrate includes a display area and a non-display area surrounding the display area. The display area includes gate lines extending along a first direction and data lines extending along a second direction crossing the first direction. The data lines are insulated from the gate lines. The gate driver is at a first non-display area of the non-display area, located outside the display area along the second direction, and is configured to apply a gate signal to the gate lines. The connection line extends along the second direction and couples the gate driver and the gate lines. A resistance of the connection line coupled to a gate line is substantially equal to a resistance of the connection line coupled to another gate line.
Abstract:
A display device includes a display panel including a plurality of pixels respectively connected to corresponding data lines and respectively connected to corresponding scan lines, a data driving circuit for driving the corresponding data lines, a scan driving circuit for driving the corresponding scan lines, and a driving controller for, during a multi-frequency mode, dividing the display panel into a first display area and a second display area and controlling the data driving circuit and the scan driving circuit so that the first display area is driven at a first driving frequency, and the second display area is driven at a second driving frequency lower than the first driving frequency. During the multi-frequency mode, the driving controller divides the second display area into a plurality of blocks and alternately drives the plurality of blocks every frame.
Abstract:
A display apparatus includes a display panel, a gate driver, a data driver, a driving controller and a power voltage generator. The display panel displays an image based on input image data. The gate driver outputs a gate signal to a gate line. The data driver outputs a data voltage to a data line. The driving controller drives display areas of the display panel in different driving frequencies. The power voltage generator outputs a data power voltage to the data driver. The driving controller outputs an output data enable signal including a writing period having an active signal and a holding period having an inactive signal for the respective display areas. The power voltage generator generates the data power voltage having a high power voltage level during the writing period and a low power voltage level in at least a portion of the holding period.
Abstract:
A display apparatus includes an integral integrated circuit and a display panel. The integral integrated circuit includes a gate channel which outputs a gate primitive signal and a data channel which outputs a data voltage. The display panel includes a level shifter which amplifies the gate primitive signal to generate a gate signal. The display panel is configured to display an image based on the gate signal and the data voltage. The display panel includes a first gate line extending in a first direction and a second gate line extending in a second direction. The second direction is different from the first direction. The second gate line is connected to the first gate line. The level shifter is connected to the second gate line.
Abstract:
A display system includes a display apparatus and a pivot performing part. The display apparatus includes a display panel configured to display an image and including a gate line and a data line, a gate driving part configured to output a gate signal to the gate line, and a data driving part configured to output a data signal to the data line. The pivot performing part is configured to receive, from the display apparatus, a pivot request data for performing a pivot function which rotates the image, and is to perform the pivot function on image data of the image in response to the pivot request data. A manufacturing cost of a display apparatus may be decreased, and a delay time of an image display may be decreased.
Abstract:
A display device including: a display panel including a pixel connected to a first scan line, second scan line, and data line, the pixel including: a first switch connected to the first scan line; a second switch connected to the second scan line; and a light emitting element; a low-frequency driving controller to output a power control signal having a first level in a first mode and a second power control signal having a second level in a second mode; a scan driver including first and second scan drivers to drive the first and second scan lines, wherein one of the first and second scan drivers operates in the second mode; and a data driver to operate in the second mode in response to the power control signal having the second level, wherein the data driver operates at a frequency lower than a reference frequency in the second mode.
Abstract:
A gate driving circuit includes: a plurality of stages, a k-th stage from among the plurality of stages, the k-th stage including: an input circuit to receive a previous carry signal and to pre-charge a first node; a first output circuit to output a k-th gate signal; a second output circuit to output a k-th carry signal; a discharge hold circuit to transmit a clock signal to a second node, and to discharge the second node with a second low voltage; a first pull down circuit to discharge the k-th gate signal with a first low voltage, and to discharge the first node and the k-th carry signal with the second low voltage; and a discharge circuit for discharging the k-th carry signal with the second low voltage in response to the previous carry signal.
Abstract:
A display apparatus includes: a backlight to generate light; a display panel to display an image by utilizing the light; a driving part to provide image signals corresponding to the image to the display panel; and a timing controller to drive the backlight, to drive the driving part at a first frequency when the image is a moving image, and to drive the driving part at a second frequency lower than the first frequency when the image is a still image. The timing controller is to set the second frequency based on a value obtained by applying a reduction rate of a flicker index corresponding to a dimming index of the backlight to a flicker index of image signals of a previous frame.