Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. A method for communicating with user equipment (UE) by a base station is disclosed. The method comprises the steps of: identifying a type of one or more services required by the UE; notifying the UE of information on a configuration of a medium access control (MAC) layer and a physical (PHY) layer configured according to the identified type of one or more services; and communicating with the UE on the basis of the information on the configuration of the MAC layer and the PHY layer configured according to the identified type of one or more services.
Abstract:
The present disclosure relates to a communication scheme for merging IoT technology with a 5G communication system supporting a data transmission rate higher than that of a 4G system, and to a system for the scheme. The present disclosure can be applied to intelligent services (for instance, smart home, smart building, smart city, smart car or connected car, heath care, digital education, retail business, security- and safety-related service and so forth) on the basis of 5G communication technology and IoT-related technology. The present invention provides a device and method for supporting paging signal processing using multi-connection in a wireless communication system.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Embodiments of the present invention provide apparatus and method for allocating resources to transmit and receive vehicle service information in a vehicle communication system. According to an embodiment of the present invention, a base station includes a control unit for allocating a resource for a user equipment (UE) which provides a second service based on priorities of a used resource allocated for a first service and a requested resource for the second service among total preconfigured resource for a vehicle service, and a transmitter for transmitting the resource allocation information to the UE.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data rate beyond a 4G communication system such as LTE. A method for controlling relay traffic by a base station in a wireless communication system supporting device to device (D2D) communication according to an embodiment of the present invention comprises checking whether received traffic is relay traffic; if the received traffic is the relay traffic, identifying a port number in each cluster of the relay traffic; determining the priority of the relay traffic according to the port number; and transmitting, to a relay terminal, a packet based on the determined priority.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system that is to support higher data transmission rates after 4G communication systems such as LTE. A method, by a MeNB, for switching a SeNB communicating with a UE in a wireless communication system, provided in an embodiment of the present disclosure, includes receiving, from the UE, a measurement report (MR) of the at least two SeNB neighboring with the UE, determining whether predetermined switch criteria are satisfied based on the MR, and transmitting, to the UE and a first SeNB or a second SeNB, a switch message indicating switching of an SeNB cooperating with the MeNB for communication with the UE from the first SeNB to the second SeNB, based on whether the switch criteria are satisfied.
Abstract:
A method of communicating with a User Equipment (UE) through a multipath transmission control protocol is provided. The method includes receiving information, by a first node, on a packet requested by the UE and information on a buffer state of the UE from the UE, exchanging, by the first node, information on a packet to be transmitted/received to/from each of one or more second nodes, determining, by the first node, a combination of packets which maximizes a coding gain and throughput of the UE and a transmission sequence by using the exchanged information on the packet, and transmitting, by the first node, packets to the UE according to the determined combination of the packets and the transmission sequence.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. The method for device to device communication according to the present disclosure comprises: a step of receiving, by a terminal, search data from search resources for relay search within a specified search-receiving resource pool, and decoding the same; a step of measuring, by the terminal, link qualities of the search resources which deliver demodulation reference signals, from the search resources corresponding to successfully decoded search data; and a step of filtering a link quality corresponding to an identifier of a specific relay among the measured link qualities.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data rate beyond a 4G communication system such as LTE. A method for controlling relay traffic by a base station in a wireless communication system supporting device to device (D2D) communication according to an embodiment of the present invention comprises checking whether received traffic is relay traffic; if the received traffic is the relay traffic, identifying a port number in each cluster of the relay traffic; determining the priority of the relay traffic according to the port number; and transmitting, to a relay terminal, a packet based on the determined priority.
Abstract:
A method and apparatus for allocating resources for communication between Base Stations (BSs) in an in-band communication system can be provided by a BS. A method for allocating resources for communication between BSs, performed by a Mobile Station (MS) in an in-band communication system includes receiving information about an interference-free expected area from a BS communicating with the MS through an access link, transmitting to the BS feedback information indicating whether the MS is located in the interference-free expected area based on the information about the interference-free expected area, receiving from the BS a message requesting measurement of a fronthaul link for communication between BSs based on the feedback information, and transmitting a measurement result of the fronthaul link to the BS.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate than a 4G communication system such as LTE. The method for device to device communication according to the present disclosure comprises: a step of receiving, by a terminal, search data from search resources for relay search within a specified search-receiving resource pool, and decoding the same; a step of measuring, by the terminal, link qualities of the search resources which deliver demodulation reference signals, from the search resources corresponding to successfully decoded search data; and a step of filtering a link quality corresponding to an identifier of a specific relay among the measured link qualities.