Abstract:
A system and an operating method of the system are provided. The system includes a communication module, a processor operatively connected to the communication module, and a memory operatively connected to the processor. The memory stores instructions that, when executed, cause the processor to receive first information including log information of a first external device from the first external device associated with an account of a user, using the communication module, to receive second information including information sensed by a second external device, from the second external device associated with the account of the user, using the communication module, to determine a usage pattern of the first external device by the user, based on at least part of the first information and the second information, and to transmit information based on at least part of the usage pattern to the second external device through the communication module to cause the second external device to display the information.
Abstract:
The present disclosure relates to a method for controlling the power of a terminal in device-to-device (D2D) communication and, particularly, to a device and a method for supporting Type 1 discovery or Mode 2 D2D communication. The present disclosure relates to a method for controlling the transmission power of a terminal performing D2D communication, and the terminal, the method comprising the steps of: selecting an arbitrary resource in a discovery period for D2D resource selection; determining whether the selected resource satisfies a preset transmission power control condition; and transmitting information for the D2D communication through the selected resource, by using the power determined according to the determination result. The present disclosure relates to a communication scheme for fusing IoT technology with a 5G communication system for supporting a data rate higher than that of a 4G system and subsequent systems thereafter. The present disclosure can be applied to intelligent services (for example, a smart home, a smart building, a smart city, a smart or connected car, healthcare, digital education, retail business, security and safety related services, and the like) on the basis of the 5G communication technology and IoT related technology.
Abstract:
A method of controlling transmission power of a terminal performing device to device (D2D) communication in a wireless communication system, the method including receiving power control information corresponding to radio resources used for the D2D communication by the terminal from a base station, determining a first transmission power of the radio resources to be used for the D2D communication by the terminal among the radio resources, and transmitting data for the D2D communication with the determined first transmission power by using the radio resource to be used for the D2D communication by the terminal.
Abstract:
The present disclosure relates to a communication technique for combining a 5G communication system for supporting a higher data transmission rate than a 4G system with an IoT technology, and a system therefor. The present disclosure can be applied to 5G communication and IoT related technology-based intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security and safety related services, etc.). Disclosed is a technology for adding uplink data to a radio resource control (RRC) connection request message corresponding to an RA response message and transmitting the same to a base station when the terminal is in an RRC deactivated state in a method for transmitting, by a terminal, uplink data in a wireless communication system.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure provides a method of a terminal, including receiving random access resource configuration information and quasi co-location (QCL) information from a base station, measuring a channel state information-reference signal (CSI-RS), identifying a random access resource based on the CSI-RS, the QCL information and the random access resource configuration information, and transmitting a random access preamble based on the random access resource.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Provided are a method and apparatus for uplink scheduling in a mobile communication system. The method of uplink scheduling for a user equipment (UE) in a mobile communication system may include identifying the amount of data stored in a buffer, generating a scheduling request (SR), and transmitting the SR to a base station (NB) on the basis of the identified data amount so that an uplink resource is to be allocated from the NB.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A mobility application method of a user equipment (UE) residing in a system of wireless communication systems, which supports transmission/reception of data, using a beamforming, via multiple input multiple output (MIMO) antennas is provided. The method includes measuring beam measurement reference signals that a network transmitted using different transmission nodes and evolved NodeB (eNBs) and transmitting the measured information to the network in a system using a number of beams.
Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data rate in comparison to the 4G communication system, such as long term evolution (LTE). A method for a terminal to establish synchronization with another terminal in a network supporting device-to-device (D2D) communication is provided. The method includes scanning, at the terminal, for synchronization signals from at least one base station, acquiring, when a synchronization signal is received from a base station, synchronization with the base station based on the synchronization signal, measuring power of the synchronization signal received from the base station, and transmitting, when data to be transmitted are generated in idle mode and the received signal power is less than a received signal power, a synchronization signal as a synchronization relaying terminal.
Abstract:
A method of controlling transmission power of a terminal performing device to device (D2D) communication in a wireless communication system, the method including receiving power control information corresponding to radio resources used for the D2D communication by the terminal from a base station, determining a first transmission power of the radio resources to be used for the D2D communication by the terminal among the radio resources, and transmitting data for the D2D communication with the determined first transmission power by using the radio resource to be used for the D2D communication by the terminal.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An apparatus and method for avoiding interference in a wireless communication system, especially in a Device-to-Device (D2D) wireless communication system, are provided. The method includes creating system information including reception resource pool information to be used for the D2D wireless communication in a single radio frame, resource block information for the D2D wireless communication, and Physical Uplink Control Channel (PUCCH) information to be used for a cellular communication, and broadcasting the created system information to devices for performing the cellular communication and the D2D wireless communication.