Abstract:
A quantum dot device includes: a first electrode and a second electrode facing each other; a quantum dot layer between the first electrode and the second electrode, and an electron auxiliary layer between the quantum dot layer and the second electrode, the electron auxiliary layer including a first nanoparticle and a second nanoparticle which is larger than the first nanoparticle, wherein a work function of the first electrode is greater than a work function of the second electrode, and wherein a difference between a lowest unoccupied molecular orbital energy level of the quantum dot layer and a lowest unoccupied molecular orbital energy level of the electron auxiliary layer is less than about 1.1 electronvolts.
Abstract:
An appliance for dehumidification, with a body having an inflow unit and an outflow unit; a heat-exchanging apparatus to condense vapor in the air; a fan to forcedly move the air; a tray to collect condensation water descending from a cooling apparatus; a water container detachably provided at an upper portion of the body to store the condensation water; a pump to pump the condensation water from the tray to the water container; and a drain pipe to guide the condensation water from the pump to the water container. The water container may be easily separated from the appliance to empty the water container when the water container is full, and then the water container may be easily mounted again.
Abstract:
A quantum dot including a core that includes a first semiconductor nanocrystal including zinc and selenium, and optionally sulfur and/or tellurium, and a shell that includes a second semiconductor nanocrystal including zinc, and at least one of sulfur or selenium is disclosed. The quantum dot has an average particle diameter of greater than or equal to about 13 nm, an emission peak wavelength in a range of about 440 nm to about 470 nm, and a full width at half maximum (FWHM) of an emission wavelength of less than about 25 nm. A method for preparing the quantum dot, a quantum dot-polymer composite including the quantum dot, and an electronic device including the quantum dot is also disclosed.
Abstract:
A semiconductor nanoparticle, a production method thereof, and an electroluminescent device including the same. The production method includes: combining a magnesium precursor and an additive with a chalcogen precursor in a reaction medium including an organic solvent and an organic ligand; heating the reaction medium to a reaction temperature; and reacting the magnesium precursor and the chalcogen precursor in the presence of the additive to form a magnesium chalcogenide, wherein the semiconductor nanoparticle comprises the magnesium chalcogenide, wherein the magnesium chalcogenide comprises magnesium; and selenium, sulfur, or a combination thereof, and wherein the additive includes a hydride compound including an alkali metal, calcium, barium, aluminum, or a combination thereof.
Abstract:
An electroluminescent device includes a first electrode; a second electrode spaced apart from the first electrode; and a light emitting layer disposed between the first electrode and the second electrode, the light emitting layer includes semiconductor nanoparticles, wherein the semiconductor nanoparticles do not include cadmium, the semiconductor nanoparticles have a core shell structure, the semiconductor nanoparticles include zinc, selenium, tellurium, and sulfur, wherein in a two dimensional image obtained by an electron microscopy analysis, the semiconductor nanoparticles show an average value of a circularity defined by the following equation of greater than or equal to about 0.8 and less than or equal to about 1: circularity = 4 π × Area [ Perimeter ] 2 wherein Area is an area of a two dimensional image of an individual semiconductor nanoparticle, and Perimeter is a circumference of the two dimensional image of the individual semiconductor nanoparticle.
Abstract:
An electroluminescent device comprising a first electrode and a second electrode facing each other, an emission layer disposed between the first electrode and the second electrode and including at least two light emitting particles, a hole transport layer disposed between the first electrode and the emission layer, and an electron transport layer disposed between the emission layer and the second electrode, wherein the electron transport layer comprises an inorganic layer disposed on the emission layer, the inorganic layer comprising a plurality of inorganic nanoparticles; and an organic layer directly disposed on at least a portion of the inorganic layer on a side opposite the emission layer, wherein a work function of the organic layer is greater than a work function of the inorganic layer.
Abstract:
A quantum dot device including an anode and a cathode facing each other; a quantum dot layer between the anode and the cathode; a hole transport layer between the anode and the quantum dot layer, the hole transport layer being configured to increase a hole transporting property from the anode to the quantum dot layer; an inorganic electron transport layer between the cathode and the quantum dot layer, the inorganic electron transport layer being configured to increase an electron transporting property from the cathode to the quantum dot layer; and an inorganic electron controlling layer between the cathode and the quantum dot layer, the inorganic electron controlling layer being configured to decrease an electron transporting property from the cathode to the quantum dot layer, and an electronic device including the same.
Abstract:
An electroluminescent device comprising a first electrode and a second electrode facing each other, an emission layer disposed between the first electrode and the second electrode and including at least two light emitting particles, a hole transport layer disposed between the first electrode and the emission layer, and an electron transport layer disposed between the emission layer and the second electrode, wherein the electron transport layer comprises an inorganic layer disposed on the emission layer, the inorganic layer comprising a plurality of inorganic nanoparticles; and an organic layer directly disposed on at least a portion of the inorganic layer on a side opposite the emission layer, wherein a work function of the organic layer is greater than a work function of the inorganic layer.
Abstract:
A quantum dot includes a core including a first semiconductor nanocrystal material including zinc, tellurium, and selenium; and a semiconductor nanocrystal shell disposed on (e.g., directly on) the core and including zinc, selenium, and sulfur, wherein the quantum dot does not include cadmium, wherein a size of the quantum dot is greater than or equal to about 10 nanometers (nm) and the quantum dot includes at least four protrusions. A production method thereof and an electronic device including the same are also disclosed.