Abstract:
A control channel transmission/reception method and apparatus are provided. The control channel transmission method of a base station includes acquiring a criterion for sorting control channels, sorting the controls channels into at least two control channel sets based on the criterion, configuring the control channels by allocating at least one antenna port to each control channel set, and transmitting the control channels as configured.
Abstract:
A method and an apparatus for transmitting uplink/downlink data on time division duplexing (TDD) carriers are provided. The method includes transmitting to a base station in a primary cell (PCell) and a secondary cell (SCell), a TDD uplink (UL)/downlink (DL) configuration of the PCell having a DL subframe super-set or UL subset that are common in the SCell and the PCell and a TDD UL-DL configuration differing from each other, receiving data at a first subframe in the SCell, and transmitting, when a UL subframe set of the SCell is a subset of a UL subframe of the PCell, a feedback corresponding to the data at a subframe predefined in association with the first subframe in the PCell according to the TDD UL-DL configuration of the SCell. The method supports both the self-scheduling and cross-carrier scheduling of the UE using carriers of different TDD configurations.
Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
A method of defining physical channel transmit/receiving timings and resource allocation is provided for use in a Time Division Duplex (TDD) communication system supporting carrier aggregation. A method for receiving, at a base station, a Hybrid Automatic Repeat Request (HARQ) acknowledgement from a terminal in a Time Division Duplex (TDD) system supporting carrier aggregation of a primary cell and at least one secondary cell includes transmitting a downlink physical channel through one of the primary and secondary cells, receiving the HARQ acknowledgement corresponding to the downlink physical channel of the primary cell at a first timing predetermined for the primary cell, and receiving the HARQ acknowledgement corresponding to the downlink physical channel of the secondary cell at second timing, wherein the second timing is determined according to the first timing.
Abstract:
A control channel transmission/reception method and an apparatus for transmitting/receiving control channels using a resource allocation scheme applicable regardless of reference signal transmission or whether the reference signal is transmitted in distributed transmission mode or localized transmission mode are provided. The control channel transmission method includes mapping a Demodulation Reference Signal (DMRS) to Resource Elements (REs) of a Resource Block (RB) for transmitting a control channel, mapping the control channel to the REs numbered with numbers of predetermined number of Resource Element Groups (REGs) in a frequency-first ascending order cyclically, with the exception of the REs to which the DMRS is mapped, and transmitting the DMRS and the control channel.
Abstract:
A method and apparatus for designing a Reference Signal (RS) used by a User Equipment (UE) to obtain respective channel estimates for demodulating respective Physical Downlink Control CHannels (PDCCHs), for determining at a UE a number of resource blocks to include for a reception of a Physical Downlink Shared CHannel (PDSCH), for determining at a UE a RS antenna port in order to enable spatial multiplexing of Enhanced PDCCH (EPDCCH) transmissions to different UEs, and for supporting Quadrature Amplitude Modulation 16 (QAM16) modulation, in addition to Quadrature Phase Shift Keying (QPSK) modulation, for EPDCCH transmissions without increasing a number of decoding operations at a UE are provided.
Abstract:
A Channel State Information (CSI) feedback method and apparatus is provided for transmitting, at a base station, the CSIs for plural transmit antennas with a limited amount resource and receiving, at a mobile station, the CSIs efficiently in a massive Multiple Input Multiple Output (MIMO) system operating in the Frequency Division Duplex (FDD) mode.
Abstract:
A control information utilization method and an apparatus of a terminal with heterogenous technology communication modules operating in a same frequency band are provided to protect against unnecessary battery power consumption. A control information reception method of a terminal includes receiving control information from a base station using a first module, determining a channel occupancy time based on the control information using a licensed assisted access (LAA) radio identifier, and transferring the channel occupancy time to a second module that is operating in a same frequency band as the first module.
Abstract:
The present invention relates to a method for transmitting, by a terminal, a sounding reference signal (SRS) or a physical uplink shared channel (PUSCH) in a mobile communication system. A communication method for a terminal in a communication system which supports the combination of configuration carrier using FDD scheme and configuration carrier using TDD scheme, in accordance with an embodiment of the present invention, comprises the steps of: receiving SRS transmission setting information from a base station; receiving uplink data scheduling information from the base station; determining whether or not the simultaneous transmission of the SRS transmission and the uplink data occurs; and setting the transmission of the uplink data or the SRS so that when the simultaneous transmission of the SRS transmission and the uplink data occurs, the sum of the respective transmission powers of the first and second symbols in an FDD cell and the first and second symbols of a TDD cell is not greater than the maximum transmission power of the terminal, wherein the timing of the first symbol in the FDD cell corresponds to the timing of the first symbol in the TDD cell, and the timing of the second symbol in the FDD cell corresponds to the timing of the second symbol in the TDD cell. In accordance with an embodiment of the present invention, defining the SRS transmission method of the terminal in a wireless communication system causes the terminal to effectively transmit the uplink data.
Abstract:
A method and an apparatus for transmitting and receiving Time Division Duplex (TDD) frame configuration information are disclosed. The base station transmits TDD frame configuration information as system information to a user equipment through a common control channel so as to dynamically change the TDD frame configuration according to uplink and downlink traffic conditions. The base station may deliver the same system information to all user equipments in the cell, removing ambiguity in User Equipment (UE) operations and avoiding interference. In comparison to an existing method of delivering TDD frame configuration information through system information update, the disclosed method enables user equipments to rapidly cope with traffic changes. In addition, user equipments may receive and apply TDD frame configuration information at the same time.