Abstract:
A system and method for using a link energy signal in physical layer devices (PHYs) having a silent channel/interface in energy efficient Ethernet (EEE). LPI modes in EEE suffer deficiencies in cable unplug detection due to the latency in refresh cycles. LPI modes in EEE also suffer from potential frequency drift, which leads to high bit error rate (BER) when coming out of LPI mode. A link energy signal transmitted during LPI modes enables real-time detection of cable unplug and the frequency lock to be maintained.
Abstract:
Aspects of a method and system for reducing transceiver power via a variable number of channels are provided. In this regard, utilization and/or availability of network and/or device resources may be determined and a configuration of channels utilized for transmitting data may be determined based on the determined utilization and/or availability of resources. Accordingly, the number of channels over which data is communicated may be altered based on determined thresholds for the utilization and/or availability of resources. Moreover, the configuration of channels utilized for communicating data may be dynamically altered by monitoring changes to the utilization and/or availability of resources. For example, the number of channels may be altered based on available bandwidth on one or more channels, based on capacity and/or available space of one or more buffers, and/or based on available power or desired power consumption of a transmitter.
Abstract:
Signals may be communicated with A/V Bridging services between an upstream link partner and a down stream link partner, each comprising an asymmetric multi-rate Ethernet physical layer (PHY). High bandwidth A/V signals may be transmitted from the upstream link partner and low bandwidth signals may be transmitted from the downstream link partner. One or more of a time stamp, a traffic class and/or a destination address may be utilized in generating PDUs as well as data rate request and a resource reservation messages via the asymmetric Ethernet PHY. The receiving link partner may register for deliver of the PDUs. An aggregate communication rate may be distributed evenly or unevenly among one or more links for transmission and aggregated upon reception via asymmetric multi-rate Ethernet PHY operations. Compressed, uncompressed, encrypted and/or unencrypted signals may be handled. Signal processing may comprise echo cancellation, cross talk cancellation, forward error checking and equalization.
Abstract:
Aspects of a method and system for an extended range copper transceiver are provided. Reducing the communication rate provided by multi-rate physical (PHY) layer operations in an Ethernet transceiver may extend the range of the Ethernet transceiver over twisted-pair copper cabling from a standard connection length. The Ethernet transceiver may support up to 1 Gbps or up to 10 Gbps transmission rate over copper cabling. The multi-rate PHY layer architecture in the Ethernet transceiver may support signal-processing operations, such as echo cancellation and/or equalization, which may be applied to the reduced communication rate to enable range extension. The reduced communication rate may be achieved by reducing the symbol rate provided by the multi-rate PHY layer operations. Reducing the communication rate may also enable utilizing greater insertion loss cabling for a standard connection length.
Abstract:
A system and method for dynamically swapping master and slave physical layer devices (PHYs) in energy efficient Ethernet (EEE). A physical layer communication mechanism can be used to dynamically reassign the master/slave assignments to facilitate the asymmetric application of EEE to a link.
Abstract:
A system and method for forming N0GBASE-T. In one embodiment, N 10GBASE-T PHYs are matched to a N×10G MAC via a shim layer. The shim layer is designed to distribute data received from a higher rate MAC to multiple lower-rate PHYs on the transmit end, and to collect data received from multiple lower-rate PHYs to a higher rate MAC.
Abstract:
A system and method for continual cable thermal monitoring using cable characteristic considerations in Power over Ethernet (PoE) applications. Cable heating in PoE applications is detected through changes in electrical characteristics of the cable itself. By periodically monitoring the electrical characteristics such as insertion loss or cross talk of the cable, it can be determined whether the cable has exceeded certain thermal operating thresholds.
Abstract:
Processing signals in a digital communication may include equalizing a signal in a timing-recovery system using a frequency domain equalizer. The frequency domain equalizer may be a frequency domain adaptive filter that adapts using a least-mean-square algorithm where at least one tap-weight that corresponds to a pre-cursor may be constrained to zero. The processing may include recovering timing information using a Mueller/Muller timing recovery algorithm that may be aided by using a pre-filter before the equalizer.
Abstract:
Aspects of a method and system for low power IDLE signal transmission in Ethernet networks are provided. In this regard, during time periods between transmissions of actual data by a local Ethernet link partner, the local Ethernet Link partner may generate one or more signals, in place of a standard Ethernet IDLE signal, that enable synchronization between Ethernet link partners. In this manner, the generated signals may enable reducing power consumption as compared to standard Ethernet IDLE signals. Accordingly, link activity may be monitored to enable detecting periods when there may be no actual data for transmission and the generated signals may be transmitted. The generated signals may be transmitted at a reduced symbol rate as compared to standard Ethernet IDLE signals. The generated signals may be transmitted via fewer network links as compared to standard Ethernet IDLE signals.
Abstract:
A system and method for dynamic power control for energy efficient physical layer communication devices. Energy-efficiency features are continually being developed to conserve energy in links between such energy-efficient devices. These energy-efficient devices interoperate with many legacy devices that have already been deployed. In these links, energy savings can be produced by having a local receiver enter an energy saving state based upon the receipt of standard IDLE signals.