Abstract:
Occlusion devices, earpiece devices and methods of forming occlusion devices are provided. An occlusion device is configured to occlude an ear canal, but other biological and non-biological conduits or chambers can be occluded using the devices and methods herein. The occlusion device includes an insertion element and at least one occluding member or element (which can be expandable) disposed on the insertion element. The occluding member is configured to receive a medium via the insertion element and is configured to expand, responsive to the medium, to contact the ear canal. Alternatively, the occluding member is made of a non-Newtonian fluid and can be enclosed by a balloon or not. Physical parameters of the occlusion device are selected to produce a predetermined sound attenuation characteristic over a frequency band. Use of a non-Newtonian fluid provides additional options or variables in customizing or designing a predetermined sound attenuation characteristic.
Abstract:
Methods and devices for voice operated control are provided. The method can include measuring an ambient sound received from at least one Ambient Sound Microphone, measuring an internal sound received from at least one Ear Canal Microphone, detecting a spoken voice from a wearer of the earpiece based on an analysis of the ambient sound and the internal sound, and controlling at least one voice operation of the earpiece if the presence of spoken voice is detected. The analysis can be a non-difference comparison such as a correlation analysis, a cross-correlation analysis, and a coherence analysis.
Abstract:
A system that records audio and stores the recording is provided. The system includes first and second monitoring assemblies mounted in an earpiece that occludes and forms an acoustic seal of an ear canal. The first monitoring assembly includes an ambient sound microphone (ASM) to monitor an ambient acoustic field and produce an ASM signal. The second monitoring assembly includes an ear canal microphone (ECM) to monitor an acoustic field within the ear canal and produce an ECM signal. The system also includes a data storage device configured to act as a circular buffer for continually storing at least one of the ECM signal or the ASM signal, a further data storage device and a record-activation system. The record-activation system activates the further data storage device to record a content of the data storage device.
Abstract:
At least one exemplary embodiment is directed to an earpiece and method for call control is provided. The method includes receiving an incoming call from a caller, accepting the incoming call in a subscriber non-speech mode, receiving and presenting speech communication from the caller, and responding to the speech communication to a subscriber by way of non-spoken subscriber response messages. The Subscriber can respond to the caller via text-to-speech messages by way of a keypad. The subscriber non-speech mode permits a non-spoken communication dialogue from the Subscriber to the Caller. A first method alerts a subscriber of an incoming call, and a second method permits the Subscriber to respond. Other embodiments are disclosed.
Abstract:
An earpiece (100) and a method (300) personalized voice operable control can include capturing (302) an ambient sound from an Ambient Sound Microphone (111) to produce an electronic ambient signal (426), delivering (304) audio content (402) to an ear canal (131) by way of an Ear Canal Receiver (125) to produce an acoustic audio content (404), capturing (306) in the ear canal an internal sound (402) from an Ear Canal Microphone (123) to produce an electronic internal signal (410), wherein the electronic internal signal includes an echo of the acoustic audio content and a spoken voice generated by a wearer of the earpiece, detecting (312) the spoken voice in the electronic internal signal in the presence of the echo, and controlling (314) a voice operation of the earpiece when the spoken voice is detected.
Abstract:
An earpiece (100) and a method (300) for evaluating auditory health can include embedding (302) at least one excitation signal (402) in an audio clip (404) to produce an embedded excitation signal (406), emitting (304) the embedded excitation signal to an ear canal (131) at least partially occluded by the earpiece, analyzing (312) a recorded sound field within the ear canal during a continuous delivery of the embedded excitation signal to assess auditory health, and adjusting (314) the excitation signal within the audio clip during the emitting based on comparative (404) differences with a reference otoacoustic emission (OAE).