Abstract:
A communication device and method can include one or more processors operatively coupled to memory, a sensor and an output device, where the one or more processors to perform operations of discovering neighboring short range communication enabled devices such as Bluetooth LE devices, creating presence lists from the discovered devices, and transferring biometric and personal data at least to or from the communication device or at least to or from one of the discovered devices. Other embodiments are disclosed.
Abstract:
Earpieces and methods of forming earpieces for radio frequency (RF) mitigation are provided. An earpiece is configured to be inserted in an ear canal. The earpiece includes an insertion element and a sealing section disposed on the insertion element and configured to conform to the ear canal. The sealing section is configured to substantially mitigate radio frequency (RF) transmission and to substantially isolate the ear canal from an ambient environment.
Abstract:
An electronic device includes a balloon configured to contact a surface of a human conduit and one or more a biometric sensors operatively coupled to or on or in or within the balloon for detecting a biometric signal. The electronic device in some examples is a biometric sensor or measuring device. In other examples, the electronic device is an integrated device such as an earpiece having biometric sensors. In yet other examples, the electronic device can be operatively coupled to other device and other biometric sensors. Other embodiments are disclosed.
Abstract:
A method and system of traversing a device through an accommodating conduit to reach a target area within the accommodating conduit can include varying an amount of elasticity of the device or an amount of torsion moment of the device applied to the accommodating conduit or varying both to minimize bending forces as the device traverses the accommodating conduit. The method or system upon reaching the target area within the accommodating conduit, can further include varying the elasticity or the torsion moment of the device or varying both to cause the device to stiffen. Other embodiments are disclosed.
Abstract:
A method of auditory communication is provided. The method includes measuring physiological data from at least one sensor to form a data set; identifying a type of the data set; identifying an auditory cue associated with the type of the data set; and generating an auditory notification based on the data set and the auditory cue. The auditory notification indicates at least one of a temporal, spectral, spatial or power characteristic of the data set. The method also includes emitting the auditory notification.
Abstract:
An earpiece (100) and a method (300) for evaluating auditory health are provided. Evaluating auditory health includes embedding (302) at least one excitation signal (402) in an audio clip (404) to produce an embedded excitation signal (406), emitting (304) the embedded excitation signal to an ear canal (131) at least partially occluded by the earpiece, analyzing (312) a recorded sound field within the ear canal during a continuous delivery of the embedded excitation signal to assess auditory health, and adjusting (314) the excitation signal within the audio clip during the emitting based on comparative differences with a reference otoacoustic emission (OAE).
Abstract:
At least one exemplary embodiment is directed to a method and/or a device for voice operated control. The method can include method measuring an ambient sound received from at least one Ambient Sound Microphone, measuring an internal sound received from at least one Ear Canal Microphone, detecting a spoken voice from a wearer of the earpiece based on an analysis of the ambient sound and the internal sound, and controlling at least one voice operation of the earpiece if the presence of spoken voice is detected. The analysis can be a non-difference comparison such as a correlation analysis, a cross-correlation analysis, and a coherence analysis.
Abstract:
Earpieces and methods of forming earpieces for radio frequency (RF) mitigation are provided. An earpiece is configured to be inserted in an ear canal. The earpiece includes an insertion element and a sealing section disposed on the insertion element and configured to conform to the ear canal. The sealing section is configured to substantially mitigate radio frequency (RF) transmission and to substantially isolate the ear canal from an ambient environment.
Abstract:
A communication device and method can include one or more processors operatively coupled to memory and an audible output device, where the one or more processors receive a call from a calling party that includes caller identification information and a voice paging message associated with the caller identification information, presenting the caller identification information, presenting the voice paging message as an alias of or to a ring tone or interleaved with the ring tone before the call from the calling party is answered or rejected. Other embodiments are disclosed.
Abstract:
A communication device and method can include one or more processors operatively coupled to memory and an audible output device, where the one or more processors receive a call from a calling party that includes caller identification information and a voice or video message associated with the caller identification information, presenting the caller identification information, present the voice message or video message as an alias of or to a ring tone or interleaved with the ring tone before the call from the calling party is answered or rejected. Other embodiments are disclosed.