摘要:
Techniques are provided for controlling neurostimulation such as spinal cord stimulation (SCS) using a cardiac rhythm management device (CRMD). In various examples described herein, neurostimulation is delivered to a patient while regional cardiac performance of the heart of the patient is assessed by the CRMD. The delivery of further neurostimulation is adjusted or controlled based, at least in part, on the regional cardiac performance, preferably to enhance positive effects on the heart due to the neurostimulation or to mitigate any negative effects. Regional cardiac performance is assessed based on parameters derived from cardiogenic impedance signals detected along various vectors through the heart.
摘要:
Techniques are provided for controlling neurostimulation such as spinal cord stimulation (SCS) using a cardiac rhythm management device (CRMD). In various examples described herein, neurostimulation is delivered to a patient while regional cardiac performance of the heart of the patient is assessed by the CRMD. The delivery of further neurostimulation is adjusted or controlled based, at least in part, on the regional cardiac performance, preferably to enhance positive effects on the heart due to the neurostimulation or to mitigate any negative effects. Regional cardiac performance is assessed based on parameters derived from cardiogenic impedance signals detected along various vectors through the heart.
摘要:
A method of in vivo sensor recalibration includes implanting a sensor at an implantation site in a living body; taking a sensor reading with the implanted sensor; taking a first electrical reading across biological material adjacent the implanted sensor; taking a second electrical reading across biological material adjacent the implanted sensor subsequent in time to the taking of the first electrical reading; comparing the first electrical reading with the second electrical reading; and recalibrating the sensor based on the comparison of the first electrical reading to the second electrical reading.
摘要:
An epicardial lead is passively fixed in a pericardial space by a passive fixation member. The passive fixation member extends from a distal portion of an epicardial lead and acts against a pericardial layer and an epicardial layer to hold the lead in place. The epicardial lead may include an electrode that is connected to a conductor that extends from a distal portion of the lead. In some embodiments the epicardial lead includes a material that promotes fibrosis to fix the lead to heart tissue. The passive fixation member may include a shocking coil.
摘要:
An epicardial lead is passively fixed in a pericardial space by a passive fixation member. The passive fixation member extends from a distal portion of an epicardial lead and acts against a pericardial layer and an epicardial layer to hold the lead in place. The epicardial lead may include an electrode that is connected to a conductor that extends from a distal portion of the lead. In some embodiments the epicardial lead includes a material that promotes fibrosis to fix the lead to heart tissue. The passive fixation member may include a shocking coil.
摘要:
Embodiments include electrical leads and methods of using electrical leads that may be used for delivering both cardioversion/defibrillation signals and pacing signals and sensing to target tissue. Some of these embodiments may also be used to sense and transmit electrical signals from target tissue. Some electrical lead embodiments are configured to be delivered into a patient's intrapericardial space by non-invasive methods.
摘要:
An implantable sensor is provided that includes a piezopolymer sensor element including a body having a plurality of layers of a piezopolymer, and an attachment device configured to hold the piezopolymer sensor element in direct contact with at least one of a bodily fluid and bodily tissue such that the piezopolymer sensor element is configured to bend in response to motion of the at least one of bodily fluid and bodily tissue. A pair of electrodes is attached to the piezopolymer sensor element and the electrodes are configured to collect an electrical charge that is generated within the piezopolymer sensor element due to the bending of the piezopolymer sensor element.
摘要:
An implantable sensor is provided that includes a piezopolymer sensor element including a body having a plurality of layers of a piezopolymer, and an attachment device configured to hold the piezopolymer sensor element in direct contact with at least one of a bodily fluid and bodily tissue such that the piezopolymer sensor element is configured to bend in response to motion of the at least one of bodily fluid and bodily tissue. A pair of electrodes are attached to the piezopolymer sensor element and the electrodes are configured to collect an electrical charge that is generated within the piezopolymer sensor element due to the bending of the piezopolymer sensor element.
摘要:
Implantable systems, and methods for use therewith, are provided for monitoring a patient's diastolic function and/or heart failure (HF) condition. A signal indicative of changes in arterial blood volume and a signal indicative of electrical activity of the patient's heart are obtained. Beginnings of diastolic periods can be detected based on a feature of the signal indicative of changes in arterial blood volume. Ends of the diastolic periods can be detected based on a feature of the signal indicative of electrical activity of the patient's heart, or on the signal indicative of changes in arterial blood volume. Diastolic periods (DPs), isovolumic relaxation times (IVRTs) and/or diastolic filling times (DiFTs) can be estimated based on the detected beginnings of the diastolic periods and detected ends of the diastolic periods. The patient's diastolic function and/or HF condition (and/or changes therein) can be monitored based on the estimates of DP, IVRT and/or DiFT.
摘要:
A fixation section and a rim form a myocardial patch for implant in the pericardial space. The fixation section is adapted to promote fibrosis to secure the patch in place. The rim is secured to and surrounds at least a portion of the fixation section and has a lumen. The patch is adapted to transition between a collapsed state and an expanded state. A stylet is passed through the lumen to force the patch into a collapsed state and is removed when the patch is positioned to allow the patch to expand and engage the epicardial surface.