Abstract:
A display device includes a TFT substrate layer, a display material layer, a common electrode layer, a touch electrode layer, a display control circuit and a touch control circuit. The common electrode layer has a common electrode. The touch electrode layer includes plural first touch electrodes and plural second touch electrodes. The display control circuit includes a display power. The touch control circuit includes a touch power independent to the display power. The touch control circuit sequentially or randomly couples a touch stimulation signal to a selected first touch electrode or receives a touch sense signal from a selected second touch electrode. The touch sense signal is driven and coupled to the common electrode layer or a node of the display control circuit for performing a touch detection operation in which there is no current loop between the display control circuit and the touch control circuit.
Abstract:
A biometric recognition apparatus includes a substrate, a plurality of sensing electrodes, a plurality of traces, at least one shielding electrode, at least one insulating layer, and at least one fingerprint recognition IC. The sensing electrodes are arranged on one side of the substrate with at least one row to detect fingerprint information. Each trace is electrically coupled to at least one sensing electrode. The shielding electrodes are arranged above the traces to avoid the interference from fingers or external noise. The insulating layer is arranged between the shielding electrodes and the traces. The fingerprint recognition IC is connected to the corresponding sensing electrodes to detect the electric charge variations at the sensing electrodes.
Abstract:
An in-cell touch display structure includes: an upper substrate, a lower substrate, a liquid crystal layer configured between the upper and lower substrates; a black matrix layer, and a thin film transistor and sensing electrode layer. The thin film transistor and sensing electrode layer includes a gate line sub-layer having a plurality of gate lines and a plurality of connection segments separated by the gate lines, and a source line sub-layer having a plurality of source lines and a plurality of sensing conductor segments separated by the source lines, wherein part of the sensing conductor segments and part of the connection segments are electrically connected together to form a plurality of sensing conductor blocks.
Abstract:
A high-accuracy flat touch display panel structure includes an upper substrate, a lower substrate, a liquid crystal layer configured between the upper and lower substrates, a thin film transistor and wiring layer, and a sensing electrode layer. The thin film transistor and wiring layer is disposed at one side of the lower substrate facing the liquid crystal layer, and includes a plurality of gate lines, a plurality of source lines, and a plurality of wirings. The sensing electrode layer is disposed at one side of the thin film transistor and wiring layer facing the liquid crystal layer, and has a plurality of sensing conductor lines. The plurality of sensing conductor lines are disposed corresponding to positions of the plurality of gate lines and the plurality of source lines.
Abstract:
A high-accuracy OLED touch display panel structure includes an upper substrate, a lower substrate, an OLED layer configured between the upper and lower substrates, a sensing electrode layer, a thin film transistor and wiring layer, a cathode layer, and an anode layer. The sensing electrode layer has a plurality of sensing conductor lines for sensing an approaching external object. The thin film transistor and wiring layer includes a plurality of gate lines, a plurality of source lines, and a plurality of wirings. The plurality of sensing conductor lines are disposed corresponding to positions of the plurality of gate lines and the plurality of source lines.
Abstract:
An in-cell touch display panel system includes: first and second substrates configured therebetween a liquid crystal layer, a black matrix layer, a sensing electrode trace layer, an insulation layer, and a sensing electrode layer. The black matrix layer is composed of a plurality of opaque lines. The sensing electrode trace layer is composed of a plurality of trace conductor lines. The insulation layer is disposed on one surface of the sensing electrode trace layer facing the liquid crystal layer. The sensing electrode layer is composed of a plurality of transparent sensing electrodes obtained from patterning a common voltage layer. Each transparent sensing electrode is connected with at least one trace conductor line, while the plurality of trace conductor lines are disposed corresponding to positions of the plurality of opaque lines of the black matrix layer.
Abstract:
A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
Abstract:
A rapid identification method for fingerprint first provides a fingerprint identification apparatus having a fingerprint sensing area and divides the fingerprint sensing area into fingerprint sensing sub-regions. In a registration stage, the method performs fingerprint sensing for the entire fingerprint sensing area to obtain fingerprint image for a whole fingerprint sensing area, fingerprint minutiae and relevant locations for the fingerprint minutiae and then pre-stores those data. In an identification stage, the method performs fingerprint sensing on a part of the fingerprint sensing sub-regions for a user to be identified and detects fingerprint minutiae and relevant locations for the fingerprint minutiae in the part of the fingerprint sensing sub-regions. The method compares the fingerprint minutiae and relevant locations detected in the identification stage with respect to the corresponding fingerprint minutiae and relevant locations in the registration stage in order to determine whether the user can be granted with access right.
Abstract:
A curved-surface OLED display device with fingerprint identification includes a substrate, a thin film transistor layer, a pixel electrode layer, an OLED display material layer, a common electrode layer, an encapsulation layer, a curved touch detection and fingerprint detection layer and a curved protective layer. The thin film transistor layer includes plural thin film transistors, plural scan lines, and plural data lines. The pixel electrode layer includes plural pixel electrodes. The curved touch detection and fingerprint detection layer includes plural sense electrodes and plural traces for performing the touch detection operation and fingerprint identification operation. A partial area of the curved touch detection and fingerprint detection layer and the curved protective layer exhibits a curved-surface shape.
Abstract:
A fingerprint identification apparatus includes a substrate, a second electrode layer, and a first electrode layer. The first electrode layer includes parallel first electrodes, and at least parts of the first electrodes have openings or dents. The second electrode layer includes parallel second electrodes and the second electrodes cross with the first electrodes on the substrate, where the openings or the dents are defined at the cross points from projected view. The second electrode is applied with transmitting signal and the corresponding electric field lines are received by the first electrode. The electric field lines detouring the edges of the first electrodes, or detouring the openings (or the dents) have induction with the finger close to or touching the first electrodes. The number of the effective electric field lines and the effective mutual capacitance changes can be increased to enhance the fingerprint sensing accuracy.