Abstract:
An apparatus comprises a cup holder bracket and a cup holder. The cup holder bracket comprises a hinge that allows the cup holder bracket to pivot between a substantially horizontal position when closed to a substantially vertical position when opened. The cup holder is coupled to the cup holder bracket and comprises a rimmed structure configured to hold an attachment end of a cup when the cup holder bracket is closed.
Abstract:
A method includes housing a dairy livestock in a stall portion of a milking box and retrieving, by a robotic attacher, a cup. For each of a plurality of teats of a dairy livestock, the method further uses the robotic arm to perform the steps of attaching the cup to the teat, detaching the cup from the teat, and maintaining the cup within the stall portion of the milking box from the time that the cup is attached to the first teat of the dairy livestock through the time that the cup is attached to a last teat of the dairy livestock. The method concludes by retracting the cup into an equipment area of the milking box after detaching the cup from the last teat of the dairy livestock.
Abstract:
A system comprises a memory operable to store first light intensity information for a first pixel of an image that includes a dairy livestock, and second light intensity information for a second pixel of the image, wherein the second pixel is adjacent to the first pixel. The system further comprises a processor communicatively coupled to the memory and operable to determine that a difference between the first light intensity information and the second light intensity information exceeds a threshold, and discard one of the first pixel or the second pixel from the image.
Abstract:
A system includes a linear carriage track positioned adjacent to a rotary milking platform, a robot carriage positioned on the carriage track such that the robot carriage may move along the carriage track from a first linear position to a second linear position, and a controller. The controller determines a movement of a milking stall of the rotary milking platform from a first rotational position to a second rotational position. The controller further determines the second linear position of the robot carriage on the carriage track corresponding to the movement of the milking stall of the rotary milking platform. The controller also communicates a position signal to a carriage actuator coupled to the robot carriage and the carriage track. The position signal causes the carriage actuator to move the robot carriage along the carriage track from the first linear position to the second linear position in conjunction with the movement of the rotary milking platform.
Abstract:
A system includes an equipment portion and a plurality of milking box stalls arranged adjacent to the equipment portion. Each of the milking box stalls is of a size sufficient to accommodate a dairy livestock. The system further includes a robotic attacher housed in the equipment portion and configured to service each of the plurality of milking box stalls at different times. The robotic attacher has a gripping portion with a spray nozzle. The gripping portion is operable to rotate around a longitudinal axis such that during a milking operation the spray nozzle is positioned on the bottom of the gripping portion, and after the milking operation the spray nozzle is positioned on the top of the gripping portion.
Abstract:
A system comprises a robotic arm operable to extend between the legs of a dairy livestock located in a milking stall of a rotary milking platform, a camera operable to generate an image signal corresponding to a rear of the dairy livestock, and a controller communicatively coupled to the robotic arm and the camera. The controller determines whether a milking claw is attached to the teats of the dairy livestock by receiving the image signal generated by the camera and processing the image signal. If it is determined based on the image signal that the milking claw is not attached, the controller controls the robotic arm to extend between the legs of the dairy livestock. If it is determined based on the image signal that the milking claw is attached, the controller controls the robotic arm not to extend between the legs of the dairy livestock.
Abstract:
A system for processing an image includes a three-dimensional camera that captures an image of a dairy livestock, wherein the image comprises a plurality of adjacent pixels, each pixel associated with a depth location. The system further includes a processor communicatively coupled to the three-dimensional camera. The processor determines that the depth locations of a first portion of the adjacent pixels fluctuate beyond a predetermined threshold over time, and discards the first portion of the adjacent pixels from the image based at least in part upon the determination.
Abstract:
A robotic attacher retrieves a preparation cup from an equipment area of a milking box located behind a dairy livestock. The robotic attacher attaches and detaches the preparation cup to the teats of the dairy livestock in sequence. The sequence comprises attaching and detaching the preparation cup to the right front teat, the left front teat, the left rear teat, and the right rear teat.
Abstract:
A system includes a linear carriage track positioned adjacent to a rotary milking platform, a robot carriage positioned on the carriage track such that the robot carriage may move along the carriage track from a first linear position to a second linear position, and a controller. The controller determines a movement of a milking stall of the rotary milking platform from a first rotational position to a second rotational position. The controller further determines the second linear position of the robot carriage on the carriage track corresponding to the movement of the milking stall of the rotary milking platform. The controller also communicates a position signal to a carriage actuator coupled to the robot carriage and the carriage track. The position signal causes the carriage actuator to move the robot carriage along the carriage track from the first linear position to the second linear position in conjunction with the movement of the rotary milking platform.
Abstract:
A system includes a robotic attacher comprising a main arm and a supplemental arm operable to extend into a stall portion of a milking box. A camera couples to the supplemental arm. The supplemental arm comprises a camera-facing nozzle operable to spray the camera with a cleanser.