摘要:
A variable resonator that comprises a loop line (902) to which two or more switches (903) are connected and N variable reactance means (102) (N≧3), in which switches (903) are severally connected to different positions on the loop line (902), the other ends of the switches are severally connected to a ground conductor, and the switches are capable of switching electrical connection/non-connection between the ground conductor and the loop line (902), the variable reactance blocks (102) are severally settable to the same reactance value, and the variable reactance blocks (102) are electrically connected to the loop line (902) as branching circuits along the circumference direction of the loop line (902) at equal electrical length intervals.
摘要:
A signal selecting device according to the present invention has two input/output ports, a plurality of resonating parts, a plurality of impedance transforming parts, and a controlling part. The resonating parts have a ring conductor having a length equal to one wavelength at a resonant frequency or an integral multiple thereof and a plurality of switches each of which is connected to a different part of the ring conductor at one end and to a ground conductor at the other end. The controlling part controls the state of the switches. The resonating parts are disposed in series between the two input/output ports. The impedance transforming parts are disposed between the input/output ports in such a manner that the impedance transforming parts at the both ends are disposed between the input/output port and the resonating part and the remaining impedance transforming parts are disposed between the resonating parts.
摘要:
A radio communication device in which the output transmission signal of a high-frequency power amplifying part is sent out to an antenna via a circulator, a high-frequency signal reflected from the antenna is transferred via the circulator to a rectifying part to obtain a direct current power, and the direct current power is supplied to a power amplifying part or another constituent part in the radio communication device as an aid to the power supply from a power supply unit.
摘要:
A multiband matching circuit includes a first matching unit, a second matching unit, and a third matching unit, with all units being connected in series in a signal path. Matching with target impedance is established at a first frequency by appropriately designing the first matching unit and at a second frequency by appropriately designing the second and third matching units. The second matching unit and the third matching unit are designed to make the conversion ratio of the impedance viewed from the connection point between the second matching unit and the third matching unit to a circuit element to the target impedance smaller than the conversion ratio of the impedance viewed from the connection point between the first matching unit and the second matching unit to the circuit element to the target impedance, at the second frequency.
摘要:
A multiband matching circuit includes a first matching unit for converting an impedance in a signal path to Z0 in a first frequency band, and a second matching unit formed of a series matching section connected at one end in series with the first matching unit in the signal path, which is a transmission line whose characteristic impedance is equal to the matching impedance Z0 or a circuit equivalent to the transmission line at least in the first frequency band, and a parallel matching section connected at one end to the signal path at the other end of the series matching section and grounded at the other end. The parallel matching section is configured to open in impedance the connection point to the signal path in the first frequency band. The series matching section and the parallel matching section are designed to match an impedance in a second frequency band with Z0.
摘要:
The present invention has for its object to provide a matching circuit with multiband capability which can be reduced in size, even if the number of handled frequency bands rises. The matching circuit of the present invention comprises a load having frequency-dependent characteristics, a first matching block connected with one end to the load with frequency-dependent characteristics, and a second matching block formed by lumped elements connected in series to the first matching block. And then, when a certain frequency band is used, matching is obtained with the series impedance of the first matching block and the second matching block. When a separate frequency band is used, a π-type circuit is constituted by connecting auxiliary matching blocks to both sides of the second matching block. Next, at the same frequency, by taking the combined impedance of this π-type circuit and a load whose characteristics do not depend on the frequency to be Z0, the influence of the second matching block is removed.
摘要:
A matching circuit includes a demultiplexer for demultiplexing a signal outputted from an amplification device into signals of respective frequency bands, and at least two matching blocks which are connected to the demultiplexer, are respectively fed with the signals of the respective frequency bands, and perform impedance matching in the respective frequency bands of the inputted signals. Impedance matching is performed on each of the demultiplexed signals of the respective frequency bands, thereby achieving a matching circuit capable of efficiently performing impedance matching in the respective frequency bands. With this matching circuit, it is possible to achieve a multi-band amplifier capable of simultaneously amplifying signals of multiple frequency bands with high efficiency and low noise.
摘要:
A tunable filter wherein coupling sections (51, 52, 53) are formed in an input/output line along its lengthwise direction, each coupling section including a gap (G51, G52, G53) formed in the input/output line and coupling electrodes (E5a1, E5b1, E5c1) arranged in the gap in the longitudinal direction of the input/output line; and resonators (41, 42) capable of varying the resonance frequency are connected to the input/output line at the positions between adjacent ones of the coupling sections. Switch means (71, 72, 73) are provided for selectively grounding the coupling electrodes of the coupling sections or selectively short-circuiting the coupling electrodes and the input/output line, and resonance frequency varying means (4m1, 4m2) are provided for varying the resonance frequency of the one or more resonators in association with the switch means.
摘要:
A duplexer according to the present invention includes a first port, a second port and a third port for external input/output, a first path formed between the first port and the third port, a second path formed between the second port and the third port, a phase shifting part provided for each path, and a resonating part provided for each path. At least any of the resonating parts has a ring conductor having a length equal to one wavelength at a resonant frequency or an integral multiple thereof, a plurality of passive circuits, and a plurality of switches each of which is connected to a different part of the ring conductor at one end and to any of the passive circuits at the other end. A switch may simply be connected to a ground conductor instead of being connected to the passive circuit.
摘要:
A bias circuit 100 comprises: a first reactance means 2 connected to an AC circuit; a second reactance means 3 connected to the first reactance means 2; a switch 7 connected to a connection point 210 between them; a third reactance means 8 connected to the switch 7; a capacitive means 4 connected to the second reactance means 3; and a DC circuit 5 connected to a connection point 220 between the second reactance means 3 and the capacitive means 4; wherein the connection point 220 is grounded in terms of alternating current. The connection point 210 is at a position such that impedance as viewed from the connection point 210 toward the capacitive means 4 is sufficiently large at a second frequency different from a first frequency. Impedance as viewed from a bias point 800 toward the bias circuit is sufficiently large at any of the frequencies.