Abstract:
A method and apparatus for setting a sample observation condition and a method and apparatus for sample observation which allow sample observation by speedily and simply finding an optimum condition while suppressing damage to the sample are provided. The setting of a sample observation condition according to the present invention is realized by an electron beam apparatus acquiring a profile at a predetermined evaluation location of a sample under a reference observation condition, by a processing section judging whether or not the above described acquired profile is located within a predetermined setting range and setting an optimum observation condition to be used for sample observation based on this judgment result. More specifically, locations where the condition can be examined are registered beforehand first and then a jump is made to the corresponding location which is irradiated with an electron beam (hereinafter referred to as “predosing”) at a low magnification, the surface of the sample is charged, enlarged to an observation magnification and secondary electron information on the target location is obtained. After that, secondary electron information is obtained at any time while performing predosing, it is successively judged from the information whether the pattern bottom part can be observed/measured or whether or not the sample is destroyed and an optimum observation condition is thereby found.
Abstract:
Information indicating the reason for a failure of template matching is provided. Difference information between a first image, which is referred to as a template, and a third image that is selected by the operator from a second image and that is larger than the template is displayed.
Abstract:
As measurement accuracy required for the scanning electron microscope (SEM) for measuring a pattern width becomes stringent, a technique of reducing the difference in a measured dimension between the SEM's is desired. However, the conventional technique of evaluating the difference in a measured dimension between the SEM's cannot separate the difference in a measured dimension between the SEM's themselves and a dimensional change resulting from deformation of the pattern itself. Moreover, the technique of reducing the difference in a measured dimension between the SEM's needs an operator for reducing the difference in a measured dimension between the SEM's for each measurement pattern shape. In this invention, a pattern at the same position is measured for a plurality of times with each SEM, and a different between extrapolated values of measured values obtained by the respective SEM's is calculated, whereby separation between the difference in a measured dimension between the SEM's and a dimensional change resulting from deformation of the pattern itself is made possible. Moreover, matching electron beam image profiles between the SEM's using an operator that simulates a difference in beam diameter between the SEM's makes it possible to reduce the difference in a measured dimension between the SEM's, not depending on a dimensional measurement pattern shape.
Abstract:
An object of the present invention is to provide a scanning electron microscope for reducing a process concerning inspection positioning or an input operation, thereby functioning with high precision at high speed. To accomplish the above object, the present invention provides a scanning electron microscope having a function for identifying a desired position on the basis of a pattern registered beforehand, which includes a means for setting information concerning the pattern kind, the interval between a plurality of parts constituting the pattern, and the size of parts constituting the pattern and a means for forming a pattern image composed of a plurality of parts on the basis of the information obtained by the concerned means.
Abstract:
A system for controlling a tool-to-tool disparity between a plurality of scanning electron microscopes includes a measuring unit for measuring a tool-to-tool disparity between plural scanning electron microscopes based on information extracted from secondary electron images which are captured by imaging a reference pattern, a tool state monitoring unit for monitoring tool states of each of the plural scanning electron microscopes, and an output unit for displaying on a screen a relationship between the tool-to-tool disparity between the plural scanning electron microscopes and tool states of each of the plural scanning electron microscopes monitored by the tool state monitoring unit. The tool state monitoring unit monitors the tool states of each of the plural scanning electron microscopes while imaging the reference pattern by using each of the plural scanning electron microscopes.
Abstract:
A method and apparatus for setting a sample observation condition and a method and apparatus for sample observation which allow sample observation by speedily and simply finding an optimum condition while suppressing damage to the sample are provided. The setting of a sample observation condition according to the present invention is realized by an electron beam apparatus acquiring a profile at a predetermined evaluation location of a sample under a reference observation condition, by a processing section judging whether or not the above described acquired profile is located within a predetermined setting range and setting an optimum observation condition to be used for sample observation based on this judgment result. More specifically, locations where the condition can be examined are registered beforehand first and then a jump is made to the corresponding location which is irradiated with an electron beam (hereinafter referred to as “predosing”) at a low magnification, the surface of the sample is charged, enlarged to an observation magnification and secondary electron information on the target location is obtained. After that, secondary electron information is obtained at any time while performing predosing, it is successively judged from the information whether the pattern bottom part can be observed/measured or whether or not the sample is destroyed and an optimum observation condition is thereby found.
Abstract:
The present invention provides a charged particle beam apparatus used to measure micro-dimensions (CD value) of a semiconductor apparatus or the like which captures images for measurement. For the present invention, a sample for calibration, on which a plurality of polyhedral structural objects with known angles on surfaces produced by the crystal anisotropic etching technology are arranged in a viewing field, is used. A beam landing angle at each position within a viewing field is calculated based on geometric deformation on an image of each polyhedral structural object. Beam control parameters for equalizing the beam landing angle at each position within the viewing field are pre-registered. The registered beam control parameters are applied according to the position of the pattern to be measured within the viewing field when performing dimensional measurement. Accordingly, the present invention provides methods for reducing the variation in the CD value caused by the variation in the electron beam landing angle with respect to the sample with an equal beam landing angle and methods for reducing the instrumental error caused by the difference in the electron beam landing angle between apparatuses.
Abstract:
A system for controlling a tool-to-tool disparity between a plurality of scanning electron microscopes includes a measuring unit for measuring a tool-to-tool disparity between plural scanning electron microscopes based on information extracted from secondary electron images which are captured by imaging a reference pattern, a tool state monitoring unit for monitoring tool states of each of the plural scanning electron microscopes, and an output unit for displaying on a screen a relationship between the tool-to-tool disparity between the plural scanning electron microscopes and tool states of each of the plural scanning electron microscopes monitored by the tool state monitoring unit. The tool state monitoring unit monitors the tool states of each of the plural scanning electron microscopes while imaging the reference pattern by using each of the plural scanning electron microscopes.
Abstract:
Equipment extracts components of spatial frequency that need to be evaluated in manufacturing a device or in analyzing a material or process out of edge roughness on fine line patterns and displays them as indexes. The equipment acquires data of edge roughness over a sufficiently long area, integrates components corresponding to a spatial frequency region being set on a power spectrum by the operator, and displays them on a length measuring SEM. Alternatively, the equipment divides the edge roughness data of the sufficiently long area, computes long-period roughness and short-period roughness that correspond to an arbitrary inspection area by performing statistical processing and fitting based on theoretical calculation, and displays them on the length measuring SEM.
Abstract:
Equipment extracts components of spatial frequency that need to be evaluated in manufacturing a device or in analyzing a material or process out of edge roughness on fine line patterns and displays them as indexes. The equipment acquires data of edge roughness over a sufficiently long area, integrates a components corresponding to a spatial frequency region being set on a power spectrum by the operator, and displays them on a length measuring SEM. Alternatively, the equipment divides the edge roughness data of the sufficiently long area, computes long-period roughness and short-period roughness that correspond to an arbitrary inspection area by performing statistical processing and fitting based on theoretical calculation, and displays them on the length measuring SEM.