Abstract:
Disclosed herein is a charged particle beam apparatus (10) including: a sample chamber (11); a sample stage (31); an electron beam column (13) irradiating a sample S using an electron beam; and a focused ion beam column (14) irradiating the sample S using a focused ion beam. The apparatus (10) includes an electrode member (45) provided to be displaced between an insertion position between a beam emitting end portion of the electron beam column (13) and the sample stage (31) and a withdrawal position distant from the insertion position, the electrode member being provided with an electrode penetrating hole passing the electron beam therethrough. The apparatus (10) includes: a driving unit (42) displacing the electrode member (45); a power source (20) applying a negative voltage to the electrode member (45); and an insulation member (43) electrically insulating the sample chamber (11)and the driving unit (42) from the electrode member (45).
Abstract:
A charged particle detector including a scintillator that is irradiated with charged particles, a fluorescent film being in contact with a first surface facing a second surface of the scintillator, the second surface being irradiated with the charged particles, and a photodetector that detects luminescence of the fluorescent film, wherein the fluorescent film has a plurality of regions, the plurality of regions respectively have phosphors that absorb luminescence of the scintillator and emit light with different wavelengths from one another, and a charged particle beam device using the charged particle detector.
Abstract:
In a vacuum apparatus including an ultrahigh vacuum evacuation pump, the ultrahigh vacuum evacuation pump is provided with a rod-shaped cathode including a non-evaporable getter alloy, a cylindrical anode disposed so as to surround the cathode, and a coil or a ring-shaped permanent magnet disposed so as to sandwich upper and lower openings of the cylindrical anode and surround the rod-shaped cathode. As a result, it is possible to reduce the size and weight of the ultrahigh vacuum evacuation pump and to dispose the vacuum evacuation pump at a desired location in the vacuum apparatus.
Abstract:
A multi-column scanning electron microscopy (SEM) system includes a column assembly, where the column assembly includes a first substrate array assembly and at least a second substrate array assembly. The system also includes a source assembly, the source assembly including two or more illumination sources configured to generate two or more electron beams and two or more sets of a plurality of positioners configured to adjust a position of a particular illumination source of the two or more illumination sources in a plurality of directions. The system also includes a stage configured to secure a sample, where the column assembly directs at least a portion of the two or more electron beams onto a portion of the sample.
Abstract:
The present invention relates to a beam blanker for a scanning particle microscope for blanking a charged particle beam having a beam axis, along which charged particles propagate before entering the beam blanker, wherein the beam blanker comprises: (a) at least one stop having an aperture, through which the charged particle beam can pass; (b) at least one first and one second deflection element, which are each configured to deflect the particle beam from the beam axis in a first and a second direction, respectively, upon a voltage being present; and (c) a deflection controller configured to apply a first AC voltage having a first frequency to the first deflection element and a second AC voltage having a second frequency to the second deflection element, wherein the deflection controller sets a difference frequency between the first and second AC voltages such that pulses of the charged particle beam have a predefined pulse period and during the pulse period outside the pulse duration substantially no charged particles pass through the aperture of the stop.
Abstract:
A method for operating a multi-beam particle optical unit comprises includes providing a first setting of effects of particle-optical components, wherein a particle-optical imaging is characterizable by at least two parameters. The method also includes determining a matrix A, and determining a matrix S. The method further includes defining values of parameters which characterize a desired imaging, and providing a second setting of the effects of the components in such a way that the particle-optical imaging is characterizable by the parameters having the defined values.
Abstract:
An object of the invention is to provide a pattern measuring device for generating appropriate reference pattern data while suppressing an increase in the manufacturing cost that would occur when manufacturing conditions are finely changed. A pattern measuring device has an arithmetic processing unit for measuring a pattern formed on a sample. The arithmetic processing unit, on the basis of signals obtained with a charged particle beam device, acquires or generates image data or contour line data on a plurality of circuit patterns created under different manufacturing conditions of a manufacturing apparatus, and generates reference data to be used for measurement of a circuit pattern from the image data or contour line data.
Abstract:
In order to solve the problem that information indicating three or more points on a contour of a figure drawn by an electron beam writer cannot be more precisely acquired, an information processing apparatus includes: an accepting unit that accepts pattern information indicating a pattern figure, and actually observed contour information acquired using an image obtained by capturing an image of a figure drawn by an electron beam writer; a transforming information acquiring unit that acquires transforming information, which is information that minimizes the sum of squares of differences between convolution values corresponding to three or more corrected contour points of a given point spread function in a region indicated by the pattern figure indicated by the pattern information and a threshold regarding the convolution values; a corrected contour point acquiring unit that acquires corrected contour point information, which is information indicating three or more corrected contour points respectively corresponding to three or more actually observed contour points, using the transforming information; and an output unit that outputs the corrected contour point information. Accordingly, it is possible to more precisely acquire information indicating three or more points on a contour of a figure drawn by an electron beam writer.
Abstract:
A defect image classification apparatus includes a control unit that selects images obtained from at least some detectors among a plurality of detectors, associated with kinds of defects to be a classification result of an automatic defect classification processing unit, as images displayed initially on a display unit. The control unit associates the kinds of the defects and the images displayed initially on the display unit, on the basis of a switching operation log when a user classifies images of defects determined previously as the same kinds as the kinds of the defects determined by the automatic defect classification processing unit.
Abstract:
A method and system to detect thickness variation of a subject material are described. In an aspect, tribological wear is assessed for a disk drive memory system at the pole tip region of a magnetic head. Images are obtained of a first region and a second region of a subject material utilizing scanning electron microscopy (SEM). The SEM images are image processed to obtain a differential contrast between the first region and the second region. An image intensity variation is determined between masked SEM images of the first region and the second region by obtaining a surface profiler image of the first region and the second region, and overlaying and calibrating the SEM images with the surface profiler images. In an aspect, image intensity variation is converted to quantified thickness utilizing a fitted relation obtained from the calibration of the surface profiler images with the SEM images.