摘要:
Solid, particulate dicarboxylic acids may be fluid loss control agents and/or viscosifying agents for viscoelastic surfactant (VES) fluids in treatments such as well completion or stimulation in hydrocarbon recovery operations. The fluid loss control agents may include, but not be limited to, dodecanedioic acid, undecanedioic acid, decanedioic acid, azelaic acid, suberic acid, and mixtures thereof having a mesh size of from about 20 mesh to about 400 mesh (about 841 to about 38 microns). A mutual solvent or a blend of at least two alcohols subsequently added to the aqueous viscoelastic surfactant treating fluid will at least partially dissolve the solid, particulate dicarboxylic acid fluid loss control agents, and optionally also “break” or reduce the viscosity of the aqueous viscoelastic surfactant treating fluid.
摘要:
Alkaline earth metal compounds may be fluid loss control (FLC) agents for viscoelastic surfactant (VES) fluids used for fluid loss control pills, lost circulation material pills and kill pills in hydrocarbon recovery operations. The FLC agents may include, but not be limited to oxides and hydroxides of alkaline earth metal, and in one case magnesium oxide where the particle size of the magnesium oxide is between 1 nanometer to 0.4 millimeter. The FLC agent may alternatively be transition metal oxides and/or transition metal hydroxides. The FLC agent appears to associate with the VES micelles and together form a novel pseudo-filter cake quasi-crosslinked viscous fluid layer that limits further VES fluid flow into the porous media. The FLC agent solid particles may be added along with VES fluids. The pills may also contain internal breakers to reduce the viscosity thereof so that the components of the pill may be recovered.
摘要:
Changing concentrations of brine in a gravel pack carrier fluid gelled with a viscoelastic surfactant (VES) increases the fluid efficiency for gravel packing long interval wells, such as wellbore producing interval greater than about 100 feet (about 30 m). VES-gelled fluids used as gravel packing fluids herein also include surfactants, fluid loss control agents, internal breakers and brine in addition to the grave. The viscoelasticity of fluid system can suspend and deliver high concentration of the gravels while reducing carrier fluid volume.
摘要:
Emulsified acids have been used to increase production rates of oil and gas in carbonate reservoirs through acid fracturing and matrix acidizing operations. An emulsifier is used to emulsify the aqueous acid with an oil, usually diesel. Very small particles, such as colloidal clay particles and/or nanoparticles increase the stability of the emulsified acids over an elevated temperature range.
摘要:
Viscoelastic surfactant (VES) based fluid systems are effective to pre-saturate high permeability subterranean formations prior to a treatment operation that would undesirably suffer from high fluid leakoff. The fluid systems may include brine, a viscosity enhancer, as well as the VES, and a high temperature stabilizer. The stabilizer may be an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, Al2O3, and mixtures thereof. The viscosity enhancer may include pyroelectric particles, piezoelectric particles, and mixtures thereof. The fluid system is easy to pump into the formation, and after initial pumping, the fluid system will soak into and occupy or “pre-saturate” the pores of the formation prior to pumping of a second treating fluid for fracturing, gravel packing, frac-packing, and the like. The methods are practiced in the absence of acids typically used in acidizing operations, such as hydrochloric acid and hydrofluoric acid.
摘要翻译:基于粘弹性表面活性剂(VES)的流体系统有效地在处理操作之前预先饱和高渗透性地下地层,这将不利地遭受高流体泄漏。 流体系统可以包括盐水,粘度增强剂,以及VES和高温稳定剂。 稳定剂可以是碱土金属氧化物,碱土金属氢氧化物,碱金属氧化物,碱金属氢氧化物,Al 2 O 3及其混合物。 粘度增强剂可以包括热电颗粒,压电颗粒及其混合物。 流体系统易于泵送到地层中,并且在初始泵送之后,在泵送第二处理流体用于压裂,砾石填充,压裂之前,流体系统将浸入并占据或“预饱和”地层的孔隙 包装等。 该方法是在酸性操作中通常使用的酸不存在的情况下进行的,例如盐酸和氢氟酸。
摘要:
Non-aqueous carrier fluids containing nano-sized particles in high concentration are effective for zone isolation and flow control in water shutoff applications for subterranean formations. The nanoparticles interact with water and solidify it to inhibit its flow, but do not have the same effect on hydrocarbons and thus selectively assist the production of hydrocarbons while suppressing water. Suitable nanoparticles include alkaline earth metal oxides, alkaline earth metal hydroxides, alkali metal oxides, alkali metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides, piezoelectric crystals, and/or pyroelectric crystals.
摘要:
The components of surfactant-laden fluids, such as those used in hydrocarbon recovery operations such as for stimulation, e.g. hydraulic fracturing, may be re-used and re-cycled into components for subsequent use in a wide range of similar or different operational fluids. In particular, aqueous fluids gelled with viscoelastic surfactants and having components therein to pseudo-crosslink the elongated VES micelles and for internal breaking may be separated into its component parts by relatively inexpensive methods such as filtration. One filtration method includes contacting the surfactant-containing fluid with a particle pack having particulate additives therein which filter out or extract fine solids from the fluid. In an alternate embodiment the surfactant-laden fluid is a nano- and/or micro-emulsion wellbore cleanup fluid.
摘要:
Water production produced from a subterranean formation is inhibited or controlled by consolidated water sensitive porous medium (WSPM) packed within the flow path of the wellbore device container. The WSPM includes solid particles having a water hydrolyzable polymer at least partially coating the particles. The WSPM is packed under pressure within the flow path of the wellbore device container to consolidate it. The WSPM increases resistance to flow as water content increases in the fluid flowing through the flow path and decreases resistance to flow as water content decreases in the fluid flowing through the flow path.
摘要:
An aqueous, viscoelastic fluid gelled with a viscoelastic surfactant (VES) is stabilized with an effective amount of an alkaline earth metal oxide alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides transition metal oxides, transition metal hydroxides, post-transition metal oxides, and post-transition metal hydroxides. These fluids are more stable and have a reduced or no tendency to precipitate, particularly at elevated temperatures, and may also help control fluid loss. When the particle size of the magnesium oxide or other particulate agent is a nanometer scale, for instance having a mean particle size of 100 nm or less, that scale may provide particle charges that use chemisorption, “crosslinking” and/or other chemistries to associate and stabilize the VES fluids, and also help trap or fixate formation fines when deposited into a proppant pack in a fracture.
摘要:
Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a synergistic internal breaker composition that contains at least one first internal breaker that may be a mineral oil and a second breaker that may be an unsaturated fatty acid. The internal breakers may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. This combination of different types of internal breakers break the VES-gelled aqueous fluid faster than if one of the breaker types is used alone in an equivalent total amount.