摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from an electronic device. The cooling apparatus includes a manifold structure having a plurality of inlet and outlet passageways for injecting coolant onto, and exhausting coolant after impinging on, a surface to be cooled. The coolant inlet and outlet passageways are interleaved in the manifold structure, and coolant is injected and exhausted through a common edge of the manifold. The manifold structure further includes coolant inlet and outlet plenums, with coolant passing through the inlet passageways from the inlet plenum in a first direction and coolant passing through the outlet passageways to the outlet plenum in a second direction, the first and second directions being perpendicular to the surface to be cooled and being opposite directions, and wherein the manifold structure is contained within a rectangular volume defined by a projection of the common edge.
摘要:
Cooling apparatuses and methods are provided for cooling an assembly including a substrate supporting multiple electronics components. The cooling apparatus includes: multiple discrete cold plates, each having a coolant inlet, a coolant outlet and at least one coolant chamber disposed therebetween; and multiple coolant-carrying tubes, each tube extending from a respective cold plate and being in fluid communication with the coolant inlet or outlet of the cold plate. An enclosure is provided having a perimeter region which engages the substrate to form a cavity with the electronics components and cold plates being disposed within the cavity. The enclosure is configured with multiple bores, each bore being sized and located to receive a respective coolant-carrying tube of the tubes extending from the cold plates. Further, the enclosure is configured with a manifold in fluid communication with the tubes for distributing coolant in parallel to the cold plates.
摘要:
Augmenting air cooling of electronics system using a cooling fluid to cool air entering the system, and to remove the heat dissipated by the electronics. A cooled electronics system includes a frame with drawers containing electronics components to be cooled. The frame includes a front with an air inlet and a back with an air outlet. A cabinet encases the frame, and includes a front cover positioned over the air inlet, a back cover positioned over the air outlet, and first and second side air returns at opposite sides of the frame. At least one air moving device establishes air flow across the electronics drawers. The air flow bifurcates at the back cover and returns to the air inlet via the first and second side air returns and the front cover. An air-to-liquid heat exchanger cools the air flowing across the electronics drawers.
摘要:
A cooling apparatus and method are provided for cooling an electronic subsystem of an electronics rack. The cooling apparatus includes a local cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronic subsystem of the rack, and includes either a housing facilitating immersion cooling of electronic components of the electronic subsystem, or one or more liquid-cooled structures providing conductive cooling to the electronic components of the electronic subsystem. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger of the local cooling station. In operation, heat is transferred via circulating coolant from the electronic subsystem and rejected in the liquid-to-air heat exchanger of the local cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
摘要:
A dual-chamber fluid pump is provided for a multi-fluid electronics cooling system and method. The pump has a first fluid path for pumping a first fluid coolant and a second fluid path for pumping a second fluid coolant, with the first fluid path including a first pumping chamber and the second fluid path including a second pumping chamber. The first and second pumping chambers are separated by at least one diaphragm, and an actuator is coupled to the diaphragm for transitioning the diaphragm between a first position and a second position. Transitioning of the diaphragm to the first position pumps first fluid coolant from the first pumping chamber while concurrently drawing second fluid coolant into the second pumping chamber, and transitioning of the diaphragm to the second position pumps second fluid coolant from the second pumping chamber while concurrently drawing first fluid coolant into the first pumping chamber.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat-generating electronic device. The method of fabrication includes: bonding a plurality of thermally conductive pin fins to a surface to be cooled, each pin fin including a stem with a bulb structure on its distal end; depositing material onto the plurality of thermally conductive pin fins to integrally form a jet impingement structure with the pin fins, wherein the distal ends of the plurality of thermally conductive pin fins form part of the jet impingement structure; and controlling the depositing of material onto the distal ends of the pin fins to form a plurality of jet orifices in the jet impingement structure, with the depositing resulting in the plurality of jet orifices automatically self-aligning between the plurality of thermally conductive pin fins.
摘要:
An automated method and system are provided for facilitating monitoring of energy usage within a data center. The method includes automatically determining energy usage of one or more electronics racks of a data center by automatically ascertaining time-based energy usage of the electronics racks. The automatically ascertaining includes obtaining multiple measurements of instantaneous energy usage by each of the electronics racks in the data center over a period of time, and then separately averaging the multiple measurements for each electronics rack to obtain the time-based energy usage of each electronics racks. The method also includes outputting the time-based energy usage of the electronic(s) racks to facilitate monitoring of the data center.
摘要:
An airflow arresting apparatus is provided configured to reside above an electronics rack within a data center. The apparatus includes an airflow arrester and a track mechanism. The airflow arrester includes a collapsible panel sized and configured to reside above the electronics rack, and when operatively positioned above the electronics rack, to extend vertically above the electronics rack and at least partially block airflow from passing over the electronics rack between the air outlet and air inlet sides of the rack. The track mechanism is sized and configured to reside above the electronics rack, and the airflow arrester is slidably engaged with the track mechanism. Positioning of the airflow arrester at a desired location above the electronics rack is facilitated by the airflow arrester slidably engaging the track mechanism.
摘要:
An airflow arrester is provided and configured to reside between electronics racks disposed in a row within a data center. The airflow arrester includes a panel, which when operatively disposed, has a first vertical end, a second vertical end, and a central vertical hinge located intermediate the first and second vertical ends. The airflow arrester further includes an attachment mechanism at the first vertical end and at the second vertical end, and when operatively disposed between a first and second structures, the airflow arrester has a single V-shaped configuration, and is sized and constructed to block airflow from passing therebetween. The single V-shaped configuration provides operational stability to the airflow arrester by translating net twisting forces applied to the airflow arrester to normal forces applied to the first and second structures at the attachment points of the airflow arrester to the first and second structures.
摘要:
A cooling system and method are provided for cooling air exiting one or more electronics racks of a data center. The cooling system includes at least one cooling station separate and freestanding from at least one respective electronics rack of the data center, and configured for disposition of an air outlet side of electronics rack adjacent thereto for cooling egressing air from the electronics rack. The cooling station includes a frame structure separate and freestanding from the respective electronics rack, and an air-to-liquid heat exchange assembly supported by the frame structure. The heat exchange assembly includes an inlet and an outlet configured to respectively couple to coolant supply and coolant return lines for facilitating passage of coolant therethrough. The air-to-liquid heat exchange assembly is sized to cool egressing air from the air outlet side of the respective electronics rack before being expelled into the data center.