Abstract:
The disclosed systems and methods provide an ink-based digital printing system for printing high quality images on a wide latitude of image receiving media. The disclosed systems and methods employ a UV curable base (transfix) layer deposited on an intermediate image transfer member that is then at least partially cured prior to an aqueous ink being deposited on the base layer to form a digital image thereon. Once the images are formed on the base layer, a drying device is optionally used to reduce a water content of the aqueous ink images on the base layer prior to transfer of the images to an image receiving media substrate. At transfer, the images and at least a portion of the base layer are transferred to the image receiving media substrate, the images being sandwiched between the portion of the base layer and the image receiving media substrate.
Abstract:
Ink compositions are prepared by processes that include acoustically mixing a plurality of components at a resonance frequency. This encourages mixing of the components over a large range of viscosities with a minimal temperature rise and also shortens mixing time.
Abstract:
An ink jettable underprint composition includes a reversible polymer material, which can reversibly transition between a liquid state and a solid state by reversible cycloaddition reactions, wherein upon cooling, the reversible polymer material transitions from a liquid state to a solid state by reversible cycloaddition reactions within a time period of less than about 10 seconds.
Abstract:
Aqueous inkjet ink compositions are provided. In an embodiment, such an aqueous inkjet ink composition comprises water; resin particles; a colorant; and optionally, a wax. The resin particles comprise a polymerization product of reactants comprising a monomer, an acidic monomer, a hydrophilic monomer, a difunctional monomer, and a reactive surfactant. The acidic monomer, the hydrophilic monomer, and the difunctional monomer may be present at an amount in a range of from about 10 weight % to about 30 weight % in the resin particles. Methods of forming and using the aqueous inkjet ink compositions are also provided.
Abstract:
A white ink composition comprises an ink vehicle comprising at least one compound chosen from acrylate monomers, methacrylate monomers, acrylate oligomers and methacrylate oligomers; at least one polyol adhesive resin that is solid at 25° C.; at least one photoinitiator; and at least one white colorant. A method of printing the ink composition is also disclosed.
Abstract:
Aqueous inkjet ink compositions are provided. In an embodiment, such an aqueous inkjet ink composition comprises water; resin particles; a colorant; and optionally, a wax. The resin particles comprise a polymerization product of reactants comprising a monomer, an acidic monomer, a hydrophilic monomer, a difunctional monomer, and a reactive surfactant. The acidic monomer, the hydrophilic monomer, and the difunctional monomer may be present at an amount in a range of from about 10 weight % to about 30 weight % in the resin particles. Methods of forming and using the aqueous inkjet ink compositions are also provided.
Abstract:
Compatible acrylate ink sets include an acrylate ink composition having 30% or less by weight pigment, 10% or less dispersant, between 40% and 80% acrylate, 12% or less photoinitiator, a viscosity between 5×105 and 3×107 cps at 35° C., and a 60 second tack between 25 and 50 g-m at 35° C.
Abstract:
A support material for use in additive manufacturing includes greater than about 30 weight percent up to about 70 weight percent of a C12 to C18 fatty alcohol ethoxylate, about 30 weight percent to about 70 weight percent of a C16 to C22 fatty alcohol, and a tackifier, a transition temperature measured as the temperature immediately before phase change, based on viscosity measurement, is less than about 65° C. A system for additive manufacturing includes such a support material and a build material, the ratio of C12 to C18 fatty alcohol ethoxylate to C16 to C22 fatty alcohol is selected for property matching of the support material to the build material. A method of additive manufacturing includes providing such a system and printing via an inkjet printer the support material and the build material to provide a precursor to a three-dimensional printed article.
Abstract:
This disclosure is directed to formulations for inks and methods for achieving those formulations for use in an emerging class of variable data digital lithographic image forming devices. Specific sub-system requirements that are unique to the emerging architecture caused an exploration of formula boundaries that, through experimentation, were determined to substantially reduce particle sizes for the color pigments enabling a higher latitude for ink image thickness. Experimentally-derived behavior in reducing particle size and adjusting rheological properties results when a inks are processed using a 3-roll mill with cooling employed. Inks demonstrated a preferably reduced preferred particle size distribution enabling a higher latitude for ink image thickness down to about 0.5 microns. Improved rheological profiles allow the inks to have higher zero-shear or static viscosity to be less runny and to allow more consistent flow into and through ink loaders and Anilox systems to a reimageable surface of an imaging member.
Abstract:
The present disclosure is directed to a process black ink composition for digital offset printing including a cyan colorant including a cyan pigment, a magenta colorant including a magenta pigment and a yellow colorant including a yellow pigment, wherein the process black ink composition includes a total amount of pigment of at least about 15 wt %, a photo-initiator a dispersant, and a curable ink vehicle component including at least one component selected from a curable monomer or a curable oligomer; wherein the process black ink composition comprises a ratio of the cyan colorant to the yellow colorant of 0.70-0.80:1.0 and a ratio of the magenta colorant to the yellow colorant of 0.90-0.80:1.0, and wherein the process black ink composition does not comprise carbon black. Methods of preparing the present process black ink composition and using the process black ink composition are also provided.