Information processing device, information processing method, and robot apparatus
    41.
    发明授权
    Information processing device, information processing method, and robot apparatus 失效
    信息处理装置,信息处理方法和机器人装置

    公开(公告)号:US07228201B2

    公开(公告)日:2007-06-05

    申请号:US10110497

    申请日:2001-08-16

    IPC分类号: G06F19/00

    摘要: A robot device (1) has a central processing process (CPU) having a plurality of objects and adapted for carrying out control processing on the basis inter-object communication carried out between the objects, the central processing process controlling accesses by the plurality of objects to a shared memory shared by the plurality of objects and thus carrying out inter-object communication. Specifically, the central processing process generates pointers P11, P12, P13, P21, P22 in accordance with accesses by the objects to predetermined areas M1, M2 on a shared memory M, then measures the pointers by the corresponding number-of-reference measuring objects RO1, RO2, and controls the accesses in accordance with the number of pointers measured, thereby carrying out inter-object communication. This enables easy realization of smooth inter-process communication.

    摘要翻译: 机器人装置(1)具有具有多个对象的中央处理处理(CPU),并且适于在对象之间进行的基于对象间通信的基础上进行控制处理,中央处理处理控制多个对象的访问 到由多个对象共享的共享存储器,从而进行对象间通信。 具体地,中央处理处理根据对象对共享存储器M上的预定区域M 1,M 2的访问来生成指针P 11,P 12,P 13,P 21,P 22,然后通过相应的 基准测量对象RO 1,RO 2,并且根据所测量的指针的数量控制访问,从而进行对象间通信。 这使得能够容易地实现平滑的进程间通信。

    INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD AND PROGRAM
    45.
    发明申请
    INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD AND PROGRAM 审中-公开
    信息处理设备,信息处理方法和程序

    公开(公告)号:US20130066816A1

    公开(公告)日:2013-03-14

    申请号:US13561704

    申请日:2012-07-30

    IPC分类号: G06F15/18

    CPC分类号: G06N7/005

    摘要: Provided is an information processing apparatus including a learning part performing learning of a model of an environment in which an agent performs action, using an observed value observed in the agent when the agent capable of action performs action, an action determining part determining action to be performed by the agent, based on the model, and a user instruction output part outputting instruction information representing an instruction from a user according to the instruction from the user, wherein the action determining part determines the action performed by the agent according to the instruction information when there is an instruction from the user.

    摘要翻译: 提供了一种信息处理装置,其包括:学习部,执行对代理执行动作的环境的模型的学习,使用在所述代理能够行动的动作时观察到的观察值执行动作,动作确定部确定动作为 基于该模型执行的代理,以及用户指令输出部,根据来自用户的指示输出表示来自用户的指示的指示信息,其中动作确定部根据指示信息来确定代理执行的动作 当有来自用户的指令时。

    INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM
    46.
    发明申请
    INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM 有权
    信息处理设备,信息处理方法和程序

    公开(公告)号:US20130054046A1

    公开(公告)日:2013-02-28

    申请号:US13564205

    申请日:2012-08-01

    IPC分类号: G06F1/26

    摘要: There is provided an information processing apparatus including: an appliance power consumption estimating unit estimating power consumption of each of a plurality of appliances disposed inside a large region that is divided into a plurality of regions; an appliance presence probability estimating unit estimating appliance presence probabilities that are probabilities that the respective appliances are present in the respective regions; a responsible share deciding unit deciding responsible shares that are proportions for respective people when power consumption in each region is shared among people who may be present in the large region; and a power consumption allocating unit calculating an allocated amount of power consumption of each person based on the power consumption of each of the plurality of appliances, the appliance presence probabilities, and the responsible shares.

    摘要翻译: 提供了一种信息处理设备,包括:设备功耗估计单元,估计设置在被划分为多个区域的大区域内的多个设备中的每一个的功耗; 设备存在概率估计单元估计各个设备存在于各个区域中的概率的设备存在概率; 负责任的股份决定单位决定在大区域内的人员之间共享每个地区的电力消耗时各个人的比例的负责人; 以及功耗分配单元,基于所述多个器具中的每一个的功耗,所述器具存在概率和所述负责人的共享来计算每个人的分配的功耗量。

    Weak hypothesis generation apparatus and method, learning aparatus and method, detection apparatus and method, facial expression learning apparatus and method, facial enpression recognition apparatus and method, and robot apparatus
    48.
    发明申请
    Weak hypothesis generation apparatus and method, learning aparatus and method, detection apparatus and method, facial expression learning apparatus and method, facial enpression recognition apparatus and method, and robot apparatus 有权
    弱假设生成装置和方法,学习装置和方法,检测装置和方法,面部表情学习装置和方法,面部识别装置和方法以及机器人装置

    公开(公告)号:US20080235165A1

    公开(公告)日:2008-09-25

    申请号:US12074931

    申请日:2008-03-07

    IPC分类号: G06F15/18 G06F17/00 G06N5/02

    摘要: A facial expression recognition system that uses a face detection apparatus realizing efficient learning and high-speed detection processing based on ensemble learning when detecting an area representing a detection target and that is robust against shifts of face position included in images and capable of highly accurate expression recognition, and a learning method for the system, are provided. When learning data to be used by the face detection apparatus by Adaboost, processing to select high-performance weak hypotheses from all weak hypotheses, then generate new weak hypotheses from these high-performance weak hypotheses on the basis of statistical characteristics, and select one weak hypothesis having the highest discrimination performance from these weak hypotheses, is repeated to sequentially generate a weak hypothesis, and a final hypothesis is thus acquired. In detection, using an abort threshold value that has been learned in advance, whether provided data can be obviously judged as a non-face is determined every time one weak hypothesis outputs the result of discrimination. If it can be judged so, processing is aborted. A predetermined Gabor filter is selected from the detected face image by an Adaboost technique, and a support vector for only a feature quantity extracted by the selected filter is learned, thus performing expression recognition.

    摘要翻译: 一种面部表情识别系统,其使用面部检测装置,当检测到表示检测对象的区域时,基于整体学习实现有效的学习和高速检测处理,并且对于包括在图像中的面部位置的移动是鲁棒的,并且能够高度准确地表达 识别和系统的学习方法。 当通过Adaboost的面部检测装置学习数据时,从所有弱假设中选择高性能弱假设的处理,然后根据统计特征从这些高性能弱假设产生新的弱假设,并选择一个弱 重复具有这些弱假设的最高判别性能的假设,以依次产生弱假设,从而获得最终假设。 在检测中,使用预先学习的中止阈值,每当一个弱假设输出鉴别结果时,确定提供的数据是否可以被明确地判断为非面。 如果可以判断,则处理中止。 通过Adaboost技术从检测到的脸部图像中选择预定的Gabor滤波器,并且仅学习由所选择的滤波器提取的特征量的支持向量,从而执行表达式识别。

    Robot apparatus, face identification method, image discriminating method and apparatus
    49.
    发明授权
    Robot apparatus, face identification method, image discriminating method and apparatus 有权
    机器人装置,面部识别方法,图像识别方法和装置

    公开(公告)号:US07317817B2

    公开(公告)日:2008-01-08

    申请号:US11656115

    申请日:2007-01-22

    IPC分类号: G06K9/00

    摘要: A robot apparatus includes face includes a face tracking module (M2) for tracking a face in an image photographed by a CCD camera, a face detecting module (M1) for detecting face data of the face in the image photographed by the image pickup device, based on the face tracking information by the face tracking module (M2) and a face identification module (M3) for identifying a specified face based on the face data as detected by the face data detecting module (M1).

    摘要翻译: 一种机器人装置,包括面部跟踪模块(M 2),用于跟踪由CCD照相机拍摄的图像中的脸部,面部检测模块(M 1),用于检测由图像拾取器拍摄的图像中的脸部的脸部数据 基于面部追踪模块(M 2)的脸部跟踪信息和面部识别模块(M 3),根据脸部数据检测模块(M 1)检测到的脸部数据,识别指定脸部的装置。

    Learning apparatus, learning method, and program
    50.
    发明申请
    Learning apparatus, learning method, and program 失效
    学习机器,学习方法和程序

    公开(公告)号:US20070239644A1

    公开(公告)日:2007-10-11

    申请号:US11732773

    申请日:2007-04-04

    IPC分类号: G06N3/00

    摘要: A learning apparatus includes a storage unit configured to store a network formed by a plurality of nodes each holding dynamics; a learning unit configured to learn the dynamics of the network in a self-organizing manner on the basis of observed time-series data; a winner-node determiner configured to determine a winner node, the winner node being a node having dynamics that best match the time-series data; and a weight determiner configured to determine learning weights for the dynamics held by the individual nodes according to distances of the individual nodes from the winner node. The learning unit is configured to learn the dynamics of the network in a self-organizing manner by degrees corresponding to the learning weights.

    摘要翻译: 学习装置包括:存储单元,被配置为存储由保持动态的多个节点形成的网络; 学习单元,被配置为基于观察到的时间序列数据以自组织的方式学习网络的动态; 获胜者节点确定器,被配置为确定胜者节点,胜者节点是具有与时间序列数据最佳匹配的动态的节点; 以及权重确定器,被配置为根据各个节点与胜利者节点的距离来确定由各个节点保持的动态的学习权重。 学习单元被配置为以自组织的方式以对应于学习权重的度学习网络的动态。