Abstract:
A process for recording an information on a surface of a substrate, which includes steps of irradiating the substrate surface with radiation modulated according to the information to be recorded and subjecting the surface of the substrate to a deposition treatment to form deposited areas and non-deposited areas in correspondence with the non-irradiated areas and the irradiated areas, respectively. By this process, a recording density of from 10.sup.8 to 10.sup.9 bit/mm.sup.2 can be obtained.
Abstract translation:一种用于在基板的表面上记录信息的方法,包括以下步骤:根据待记录的信息对基板表面进行辐射调制,并对基板的表面进行沉积处理以形成沉积区域并且不沉积 分别与未照射区域和照射区域对应的区域。 通过该处理,可以获得108至109位/ mm 2的记录密度。
Abstract:
A magnetic recording medium comprising a non-magnetic support, a thin magnetic metal film on the support, and a protective layer on the thin magnetic film, the protective layer containing chromium and iron, the chromium being present in an amount of 6 to 40 wt % and the iron being the remainder. The protective layer may optionally contain up to 20% by weight nickel.
Abstract:
A digital display measuring system includes a movable and stationary members between which an object to be measured is located, these members respectively supporting transmitter and receiver electrodes which define a variable capacitor having its electrostatic capacity which is adapted to change as the movable member is displaced relative to the stationary member. The change of electrostatic capacity is detected and converted into an electrical signal which is digitally indicated on a display to show the mechanical displacement of the movable member.
Abstract:
A magnetic recording medium comprises a non-magnetic substrate, a thin magnetic metal film layer overlaid on the substrate, a metallic oxide layer formed on the surface of the thin magnetic metal film layer, and a polymer film formed by plasma polymerization. The polymer film is overlaid on the metallic oxide layer to improve the corrosion resistance and durability of the magnetic recording medium.
Abstract:
A magnetic recording medium having a layer of an organic polymer formed on an oblique vapor deposited magnetic metal film is disclosed. A layer of a higher aliphatic acid and/or an ester thereof is also formed on said polymer layer.
Abstract:
This invention is a method of making heat-resistant polyester, the method being characterized by reacting the polyester consisting of the aromatic dicarboxylic acid and the glycol component of 2-6 carbons with 0.1-5 weight percent of the bifunctional epoxy compound given by the general formula ##STR1## (R is an organic group containing benzene ring) to reduce the amount of the end carboxyl group to below 15 g equivalents per 10.sup.6 g of the polymer.
Abstract:
A method of making a magnetic film target for use in sputtering characterized by forming a film of a magnetic material on a substrate by ion-plating a raw magnetic material thereon. The raw magnetic material is either identical with the magnetic film material or an ingredient or ingredients for constituting it. In the latter case, one or more metallic ingredients are simultaneously ion-plated in the same system to form a magnetic alloy or compound film on the substrate. To prepare a magnetic alloy target in which the composition changes in the thickness direction, the ion plating ratio of respective metallic ingredients is changed with time.
Abstract:
This invention is a polymer and a method of making heat resistant polyester which is characterized by reacting the polyester which consists of aromatic dicarboxylic acid and glycol with 2-6 carbons, with 0.1-5 weight % of the bifunctional epoxy compound which has one carbonyl group adjacent to the nitrogen atom and is expressed by the general formula ##STR1## (R is a divalent organic group) to keep the amount of end carboxyl group below 15 g equivalent/10.sup.6 g polymer.
Abstract:
A magnetic recording medium comprises a substrate of a non-magnetic material and a magnetic recording layer of a magnetic material provided thereon having an axis of easy magnetization vertical to the magnetic recording layer. The magnetic recording medium has a magnetic flux converging element of high permeability material provided between the substrate and the magnetic recording layer or on the exposed surface of the substrate. The magnetic flux converging element converges a magnetic flux diverging from a magnetic head which is located above the magnetic recording medium.
Abstract:
A display device which can ensure sufficient adhesive strength between each pair of substrates of a liquid crystal display panel and a sealing material includes: a first substrate having a predetermined integrated circuit; a second substrate on one surface of the first substrate in an overlapping manner; and an adhesive material between the first substrate and the second substrate that has an annular planar shape. The adhesive material adheres the first substrate and the second substrate, wherein an outer periphery of the adhesive material includes a zone which includes a plurality of first portions passing substantially the same position as an outer periphery of the surface of the first substrate and a plurality of second portions each connected with the two neighboring first portions and having a center portion thereof in a peripheral direction retracted toward an inner peripheral side of the adhesive material.