Abstract:
Provided is a vector selection modulation-based multi-antenna transmission method, including: for a group of data to be transmitted, using part of bit information in the group of data to select a weight corresponding to the group of data from K preconfigured weights; and performing constellation mapping modulation on residual bit information in the group of data, and using the selected weight corresponding to the group of data to weight the group of data after the constellation mapping modulation, wherein, the K is a natural number. Based on the method of the present document, the spectrum efficiency of the system can be greatly improved under the condition without adding a transmission antenna.
Abstract:
A method for feeding back channel state information is provided, which includes: a base station notifying a terminal of transmission resources used for transmitting a plurality of Channel State Information (CSIs) or a plurality of colliding CSIs and/or of priorities between a plurality of CSIs or a plurality of colliding CSIs. In the present document, the base station indicates the terminal on how to handle a feedback of the colliding CSIs when collision between the CSIs occurs during processes of feeding back a plurality of CSIs via a high layer signaling or a preset rule, which enables the base station and the terminal to reach a uniform feedback mechanism, and guarantees a minimum possibility of discarding CSIs, thereby solving the problem of the impact on the CoMP performance due to discarding excessive CSIs.
Abstract:
Presented are systems and methods for resource allocation. A wireless communication device may receive information from a wireless communication node, the information comprising a location of a starting symbol (S) and a time domain duration (L) of a first transmission occasion for a set of one or more transmissions, a number of consecutive slots, and a number (N) of transmission occasions in a time slot, each transmission occasion defining a time window for one of the one or more transmissions. The wireless communication device may determine a location of a last transmission occasion of the set. The wireless communication device may perform the set of one or more transmissions across the number of consecutive time slots according to the information and the location of the last transmission occasion.
Abstract:
Disclosed is a determination, access, sending and processing method and device, base station and terminal. The method for determining au uplink receiving beam and applied to a base station includes: receiving, by using N receiving configurations, a random access signal sent by a terminal, where N is an integer equal to or greater than 2; obtaining respective receiving state information corresponding to the N receiving configurations; and determining a receiving configuration of the uplink receiving beam according to the receiving state information.
Abstract:
Disclosed is a method and apparatus for transmitting and receiving a synchronization signal and a transmission system. In the method, a transmitting node determines a frequency band range in which a carrier is located, and configures or assumes synchronization channel information on the carrier according to the frequency band range, where the synchronization channel information includes at least one of: a subcarrier spacing or orthogonal frequency division multiplexing (OFDM) symbol information of a synchronization channel; and the transmitting node transmits the synchronization signal using the synchronization channel information.
Abstract:
Apparatuses, methods, systems, and computer readable media are disclosed. In one aspect, a wireless communication method is disclosed. The method includes receiving, by a first wireless device, one or more control information messages, at least one of the control information messages including a transmission cancellation indication indicating that a transmission previously scheduled for the first wireless device is to be cancelled, and performing, by the first wireless device, a timing analysis on the at least one of the control information messages including the transmission cancellation indication.
Abstract:
Methods, systems, and devices related to digital wireless communication, and more specifically, to techniques related to generating a scrambled payload that distinguishes a wireless device using an initialization scrambling sequence. In one exemplary aspect, a method for wireless communication may include generating a scrambled payload, where the scrambled payload is generated using an initialization scrambling sequence that is at least partially based on a preamble index and includes a length of 31 bits. The method also may include transmitting a first message to a communication node during a random access procedure, the first message including the scrambled payload.
Abstract:
Disclosed are a signal transmission method and device, and a computer storage, including that: a base station sends or receives a signal within a sweep time interval, an access signal time interval, which is comprised of sweep time blocks sweep time blocks. The access signal time interval includes a downlink access signal time interval and an uplink access signal time interval. The base station sends the signal over the downlink access signal time interval, and receives the signal over the uplink access signal time interval. A terminal sends or receives a signal within the access signal time interval which is comprised of the sweep time blocks. The terminal sends the signal over the uplink access signal time interval, or receives the signal over the downlink access signal time interval.
Abstract:
Disclosed are a signal transmission method and device, and a computer storage, including that: a base station sends or receives a signal within a sweep time interval, an access signal time interval, which is comprised of sweep time blocks sweep time blocks. The access signal time interval includes a downlink access signal time interval and an uplink access signal time interval. The base station sends the signal over the downlink access signal time interval, and receives the signal over the uplink access signal time interval. A terminal sends or receives a signal within the access signal time interval which is comprised of the sweep time blocks. The terminal sends the signal over the uplink access signal time interval, or receives the signal over the downlink access signal time interval.