Abstract:
A chip package (101) and a lens module (103) mounted on the chip package are provided. The chip package includes a substrate (20), a first chip (40), a second chip (70), and a cover (80). The first chip is mounted on the substrate and is electrically connected with the substrate via a first plurality of wires (50a). The second chip is mounted above the first chip and above the wires connected with the first chip and is electrically connected with the substrate via a second plurality of wires (50b). The cover is mounted above the second chip and the wires connected with the second chip.
Abstract:
A measuring system (200) for measuring a FOV of a digital camera module (52) includes a measuring chart (22), a parameter inputting module (32), and a processing module (42). The measuring chart defines a colored portion. The parameter inputting module is used to input relative parameters. The processing module is connected to the parameter inputting module and receives electronic image signals converted from images of the colored portion and of the measuring chart screened by the lens module. The processing module is configured for calculating the FOV θ of the digital camera module. A measuring method for measuring the FOV θ of the digital camera module is also provided.
Abstract:
A digital still camera module includes an image sensor package (2) and a lens barrel (30) mounted on the image sensor package. The image sensor package includes a substrate (20), an image sensor chip (22), and a cover (28). The substrate defines a receiving chamber (203) therein. The image sensor chip mounted in the receiving chamber of the substrate. The cover, which is transparent and has a smaller profile than that of the substrate, is secured to the top portion of the substrate thereby sealing the receiving chamber. The top portion of the substrate has an uncovered section (29) at a periphery of the cover. The lens barrel includes at least one lens (31) received therein. The lens barrel is securely attached to the uncovered section of the top portion of the substrate.
Abstract:
A lens module (200) includes a barrel (20), a lens (30) and a shielding layer (51). The barrel includes a screening end (21) and a mounting end (22) positioned opposite to the screening end, and defines an aperture (23) in the screening end. A diameter of the aperture reduces in a direction from the screening end to the mounting end so that the aperture has a large diameter and a small diameter. The lens is received in the barrel. The shielding layer made of an opaque film is mounted on the screening end and defines a receiving hole (511) aligned with the aperture. The receiving hole has a diameter being in a range of the large diameter and the small diameter.
Abstract:
A measuring system (200) for measuring a FOV of a digital camera module (52) includes a measuring chart (22), a parameter inputting module (32), and a processing module (42). The measuring chart defines a colored portion. The parameter inputting module is used to input relative parameters. The processing module is connected to the parameter inputting module and receives electronic image signals converted from images of the colored portion and of the measuring chart screened by the lens module. The processing module is configured for calculating the FOV θ of the digital camera module. A measuring method for measuring the FOV θ of the digital camera module is also provided.
Abstract:
A clamping device (100) for clamping a digital camera module (300) includes a base (12) and two legs (14). Two legs extend from two sides of the base. Each leg has at least one foot (18). The at least one foot defines an arcuate surface (180). The arcuate surfaces cooperatively define a space for receiving the digital camera module.
Abstract:
A digital camera module (100) includes a holder, an image sensor chip package (30), a number of conductive elements (24) and a circuit board (40). The holder defines a receiving portion. The holder is mounted on the image sensor chip package. The image sensor chip package has a number of outer pads. The outer pads are positioned in the receiving portion of the holder. The conductive elements are received in the receiving portion. One end of each of the conductive elements is connected to the inner pads, the other end of each of the conductive elements is connected to the circuit board.
Abstract:
A camera module (100) includes a lens module (10) and an image sensor (20), wherein the lens module includes a barrel (12), a plurality of lenses (14) and at least one spacer between each two neighboring lenses. The barrel includes an inner wall (122), the lenses and the spacer both are received in the barrel; the image sensor is located on an imaging plane of the plurality of lenses. At least one through slot (18) is defined in at least one item selected from the group consisting of lenses, spacer, and between the lenses and spacer. At least one groove (124) is defined between the inner wall of the barrel and the group consisting of the lenses, spacer and the image sensor. The at least one through slot communicates with at least one groove.
Abstract:
An exemplary focusing mechanism (100) for focusing a lens module includes a testing apparatus (10) and a processor (20), the testing apparatus includes a first testing chart (12) and a second testing chart (14), the first testing chart and the second testing chart are movably placed in an incident light path of the lens module, the processor is connected to the testing apparatus. Two exemplary focusing methods for focusing a lens module are also provided, each method using the focusing system.
Abstract:
A digital camera module (10) includes a chip package (20) and a lens module (50) mounted to the chip package. The package includes a carrier (21), a chip (23), a plurality of wires (24), an adhesive (26) and a cover (28). The carrier has a top surface (211), and a plurality of top contacts (215) arranged on the top surface around the opening. The chip is mounted to the top surface of the carrier, and includes an active area (231) and a plurality of pads (233) disposed on a top surface thereof. The wires electrically connect each of the pads to a corresponding top contact of the carrier. The adhesive is applied to a peripheral circumference of the top surface of the chip, around the active area. The cover is adhered to the adhesive, and encloses the active area of the chip cooperatively with the adhesive.