Abstract:
The hand-held electronic device includes a central processing unit, a memory unit, a state-detecting unit, a state-determining unit, a main power supply unit, a standby power supply unit, and a power supply switching unit. After determining the presence of a fall state, the state-determining unit will output a fall prevention instruction and which causes the central processing unit to enter a low-potential current mode; meanwhile, the power supply switching unit monitors power output and continues to supply low-potential power. In case of a fall of the hand-held electronic device, the device and method protect operation data and reduce the otherwise power-consuming current. The less power-consuming current is conducive to the reduction of capacitance required for a backup battery. The low-potential current mode is effective in reducing the time taken to recover the operation mode of the electronic device.
Abstract:
The present invention provides a circuit board having an isolation cover and an assembling method thereof. The circuit board of the present invention comprises a main body and an isolation cover disposed on the circuit board main body. The main body and the isolation cover have a plurality of corresponding first and second positioning portions, and a ground portion is disposed on at least one side of each first positioning portion. The isolation cover is disposed on a first surface of the main body, and each second positioning portion passes through a second surface of the main body and each first positioning portion. An end of each second positioning portion is connected to each ground portion.
Abstract:
The present invention provides a circuit board of a communication product and a manufacturing method thereof. The circuit board comprises a main body of a circuit board and an isolation cover. A surface of the main body of the circuit board has a power transistor, an insulating layer, a plurality of first openings disposed at intervals on the insulating layer and around the power transistor, and a plurality of soldering portions exposed from the first openings respectively. The isolation cover comprises a cover body and a plurality of second openings equidistantly opened on a lateral side of the cover body. The isolation cover is disposed on the surface of the main body of the circuit board, and is soldered to the soldering portions through a local spot soldering process.
Abstract:
An EMI-resistant circuit board assembly includes a plurality of circuit boards arranged in a stack and a metal shielding frame respectively sandwiched in between each two adjacent circuit boards. One of the circuit boards has at least one high-speed device producing high-frequency noises to the ambient, which result in EMI effect. The metal shielding frame is electrically connected to the ground potential of the circuit boards and shields the high-speed device on the circuit board to guide the high-frequency noises to the ground potential.
Abstract:
A downstream power calibration method comprises the following procedures. First, select base sampling frequencies and sampling power levels, thereby generating base sampling signals. Next, input base sampling signals into a modem such that obtaining each sum of the feedback signals responding to the tuner and the IF amplifier of the modem by the modem chip corresponding each said base sampling signal, thereby setting up a sampling data table. Third, repeat the procedure mention above for a plurality of modems to get a plurality of sampling data tables respectively, and then obtain a mean data table. Fourth, select spot frequencies and spot power levels from the base sampling frequencies and the base sampling power levels to generate spot sampling signals. Thereafter, input the spot sampling signals into a cable modem and set up a skeleton data table. Finally, expand skeleton data table and obtain an individual default data table for the modem, thereby providing the basis of the calculation of power levels when the cable modem is receiving downstream signals.
Abstract:
A multi-band antenna module is adapted to be disposed on a casing. The multi-band antenna module includes a main radiator, and a first, a second, a third and a fourth radiator. The main radiator has a feed-in terminal and a first ground terminal. The first radiator is connected to the main radiator and configured to couple a first frequency band. The second radiator is connected to the main radiator and configured to couple a second frequency band. The third radiator is connected to the main radiator and configured to couple a third frequency band. The fourth radiator is located beside the main radiator and configured to couple a fourth frequency band and has a second ground terminal. The main radiator, the first radiator, the second radiator, the third radiator and the fourth radiator are adapted to form a 3D structure along an outline of the casing.
Abstract:
A processing method of face recognition includes steps of: extracting embedding feature information from a face image; outputting a recognition result of face recognition according to the embedding feature information, wherein the recognition result includes a recognized name and embedding feature distance information; determining whether the recognized name is in a list or not; if the recognized name is in the list, performing a removal checking step for determining whether to remove the recognition result based on the embedding feature distance information; if determining that the recognition result is not to be removed, displaying the recognized name; if determining that the recognition result is to be removed, displaying a negative prompt; and dynamically and instantly providing a feedback and updating a recognition method for the face recognition.