摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
The present invention is a system that grids original data, maps the data at the grid locations to height values at corresponding landscape image pixel locations and renders the landscape pixels into a three-dimensional (3D) landscape image. The landscape pixels can have arbitrary shapes and can be augmented with additional 3D information from the original data, such as an offset providing additional information, or generated from processing of the original data, such as to alert when a threshold is exceeded, or added for other purposes such as to point out a feature. The pixels can also convey additional information from the original data using other pixel characteristics such as texture, color, transparency, etc.
摘要:
A plurality of vertex or fragment processors on a graphics processor perform computations. Each vertex or fragment processor is capable of executing a separate program to compute a specific result. A combiner manages the combination of the results from the respective processors, and produces a final transformed vertex or pixel value. The vertex or fragment processors and the combiner can be programmable to modify their operations. As such, the vertex or fragment processors can operate in a parallel or serial configuration, or both. The combiner manages and resolves the operations of the serial and/or parallel configurations. A synchronization barrier enables the combiner to perform data-dependency analysis to determine the timing and ordering of the respective processors' execution. A transformation module can include one or more programmable vertex processors that transforms three-dimensional geometric data into fragments. The fragment processors subsequently receive and compute a result for each fragment, which is combined using the combiner to produce the final pixel value.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
A visual server system (10) includes a visual server (12) that provides graphics images through execution of a graphics application (20). A local terminal (16) may interact with the graphics application (20) through a server application (30) in response to possession of input control. A remote client terminal (14) may interact with the graphics application (20) through a session application (22) in response to possession of the input control. The input control is passed between the local terminal (16) and the remote client terminal (14) in order to provide collaboration of a graphics session. The local terminal (16) and the remote client terminal (14) receive the same view of the graphics application (20). Interactions with the graphics application (20) performed by either the local terminal (16) or the remote client terminal (14) are viewable by the other terminal. Interactions with the graphics application (20) by either the local terminal (16) or the remote client terminal (14) that does not have the input control are blocked.
摘要:
A method and system for minimizing an amount of data needed to test data against subarea boundaries in spatially composited digital video. Spatial compositing uses a graphics unit or pipeline to render a portion (subarea) of each overall frame of digital video images. This reduces the amount of data that each processor must act on and increases the rate at which an overall frame is rendered. Optimization of spatial compositing depends on balancing the processing load among the different pipelines. The processing load typically is a direct function of the size of a given subarea and a function of the rendering complexity for objects within this subarea. Load balancing strives to measure these variables and adjust, from frame to frame, the number, sizes, and positions of the subareas. The cost of this approach is the necessity to communicate, in conjunction with each frame, the graphics data that will be rendered. Graphics data for a frame is composed of geometry chunks. Each geometry chunk is defined by its own bounding region, where the bounding region defines the space the geometry chunk occupies on the compositing window. Only the parameters that define the bounding region are communicated to each graphics unit in conjunction with the determination of which graphics unit will render the geometry chunk defined by the bounding region. The actual graphics data that comprises the geometry chunk is communicated only to those geometry units that will actually render the geometry chunk. This reduces the amount of data needed to communicate graphics data information in spatially composited digital video.
摘要:
A system and method for rendering with an object proxy. In one embodiment, a method includes forming a set of view textures corresponding to a set of viewing directions; selecting a viewing direction for rendering; selecting at least two view textures from the formed set based on the selected viewing direction; and rendering the object proxy at the selected viewing direction. The rendering step includes applying texture from the selected view textures onto the selected object proxy. The view texture set forming step includes: calculating texture coordinates for the object proxy based on the level of obstruction at different portions of the object proxy and texture packing data; and drawing portions of the object based on the level of obstruction data for the object proxy and based on the texture packing data to obtain a view texture at the selected viewing direction.
摘要:
A system that, at a process checkpoint, pauses the process to copy the system state for the process and then copies pages of the process in memory to disk storage while the process continues to run. When a write to a page by the process is to occur that requires a translation from a virtual address to a physical address the write is intercepted. The page that is being modified is duplicated and then the process is allowed to modify the page and continue. The duplicate page is then stored as part of the checkpoint copy.
摘要:
The present invention is a system that receives data in different formats from different devices/applications in the format native to the devices/applications and fuses the data into a common shared audio/video collaborative environment including a composite display showing the data from the different sources in different areas of the display and composite audio. The common environment is presented to users who can be at remote locations. The users are allowed to supply a control input for the different device data sources and the control input is mapped back to the source, thereby controlling the source. The location of the control input on the remote display is mapped to the storage area for that portion of the display and the control data is transmitted to the corresponding device/application. The fusion system converts the data from the different sources/applications into a common format and stores the converted data from the different sources in a shared memory with each source allocated a different area in the memory. A combined window like composite representation of the data is produced and also stored in the memory. The combined representation is transmitted to and can be controlled by the users.
摘要:
A visual server system (10) includes a server (12) having a graphics application (20). The graphics application (20) generates image content and position information. The server (12) streams the image content and the position information for transport over a network link. A plurality of remote clients (14) can receive the image content and position information from the server (12) over the network link. Each of the plurality of remote clients (14) may provide input parameters to the graphics application (20). The input parameters can provide adjustments to the image content and position information provided to each of the plurality of remote clients (14). The graphics application (20) selects from among the input parameters provided by the plurality of remote clients (14) for adjusting the image content and the position information provided to the remote clients (14).