Abstract:
A process is provided for fabricating a wafer including a plurality of chips separated by scribe lines. The method includes locking at least one chip on the wafer using a secret key, and writing the secret key into at least one memory present on the wafer.
Abstract:
The method includes defining from all the check nodes at least one group of check nodes mutually connected through at least one second variable node defining an internal second variable node. The method includes performing for each group the joint updating of all the check nodes of the group via a Maximum-A-Posteriori (MAP) type process, and the updating of all the first variable nodes and all the second variable nodes connected to the group except the at least one internal second variable node. The method may include iteratively repeating the updates.
Abstract:
An electronic device, includes sigma-delta modulation circuit to operate with a clock signal and having output circuitry to deliver a digital data signal. First circuitry delivers a radiofrequency transposition signal. A notch filter includes radiofrequency digital-to-analog conversion blocks, having first input circuitry coupled to the output circuitry. Second input circuitry receives the radiofrequency transposition signal. Second output circuitry delivers a radiofrequency analog signal. Digital delay circuitry is controlled by the clock signal and includes a delay block between the two first input circuits. The frequency of a notch of the notch filter is related to the value of the delay from the delay block. Summation circuitry sums the radiofrequency signals.
Abstract:
An Adjustable Field Effect Rectifier uses aspects of MOSFET structure together with an adjustment pocket or region to result in a device that functions reliably and efficiently at high voltages without significant negative resistance, while also permitting fast recovery and operation at high frequency without large electromagnetic interference.
Abstract:
A data cache memory coupled to a processor including processor clusters are adapted to operate simultaneously on scalar and vectorial data by providing data locations in the data cache memory for storing data for processing. The data locations are accessed either in a scalar mode or in a vectorial mode. This is done by explicitly mapping the data locations that are scalar and the data locations that are vectorial.
Abstract:
Semiconductor protection devices, and related methods and systems, especially devices for providing series current limiting. The device typically comprises two regenerative building blocks and/or MOSFETs connected back-to-back in series, where one of the MOSFETs/Regenerative Building Blocks has an extra voltage probe electrode that provides a regenerative signal with self-limited voltage to the other via coupling to its gate electrode.
Abstract:
The block de-interleaving system includes an input for receiving a set of time-aligned blocks or interleaved data, physical memory unit, and a de-interleaving block for writing the blocks in the memory in a first predetermined manner and reading the blocks from the memory in a second predetermined manner to de-interleave the data of the blocks. The physical memory unit may include several different physical memories, and the de-interleaving block is adapted to completely write and read a block into and from one physical elementary memory.
Abstract:
The LDPC decoder includes a processor for updating messages exchanged iteratively between variable nodes and check nodes of a bipartite graph of the LDPC code. The decoder architecture is a partly parallel architecture clocked by a clock signal. The processor includes P processing units. First variable nodes and check nodes are mapped on the P processing units according to two orthogonal directions. The decoder includes P main memory banks assigned to the P processing units for storing all the messages iteratively exchanged between the first variable nodes and the check nodes. Each main memory bank includes at least two single port memory partitions and one buffer the decoder also includes a shuffling network and a shift memory.
Abstract:
A method for de-interleaving S2 received sequences of interleaved received data samples respectively issued from S2 physical channels and to be associated with S1 output transport channels is provided. The S2 received sequences have been delivered, before transmission by a two-stage multi-interleaving device, from S1 initial sequences of ordered data samples respectively associated to S1 initial transport channels. The two-stage multi-interleaving device includes a first stage including S1 interleaving blocks respectively associated to the S1 initial transport channels, a second stage including S2 interleaving blocks respectively associated to the S2 physical channels, and an inter-stage of predetermined data-routing functions connected between the first and second stages.
Abstract:
A Bluetooth master radio frequency unit addresses a slave radio frequency unit, to enable the slave to resynchronize to the master, by sending poll packets or null packets, the master being arranged to send sufficient null packets to enable the slave to resynchronize, before sending a poll packet, to determine whether the slave has resynchronized. This approach can provide the slave with the same number of synchronization packets as in the simpler algorithms, while allowing the slave to preserve more (transmit) power and still allowing the master to detect whether the slave has resynchronized or not (and thus to update a Link Supervision Timer for example). Notably this is also suitable for use in prescheduling implementations.