Abstract:
A hot melt system includes a melt system, a feed system, a dispensing system, and a pump. The melt system melts the pellets to produce a liquid, and the pump delivers the liquid to the dispensing system. The feed system is coordinated with the operation of the pump to control the amount of pellets delivered to the melt system.
Abstract:
A hot melt dispensing system comprises a container, a melter, a feed system, a dispensing system and a fluid line. The container stores hot melt pellets. The feed system transports hot melt pellets from the container to the melter. The melter is capable of heating hot melt pellets into liquid hot melt adhesive. The fluid line connects the melter and the dispensing system. The dispensing system administers liquid hot melt adhesive from the melter. The fluid line comprises a rigid segment and a heating element connected to the rigid segment. In another embodiment, the fluid line comprises first and section portions connected by an articulating joint.
Abstract:
A device for metal coating of fibers, for example ceramic fibers, by a liquid process, the device including a crucible containing a liquid metal bath through which a fiber is drawn to be coated with the metal, and a cooling system positioned downstream from the metal bath to solidify the metal sheath created around the fiber by capillarity. The cooling system includes at least one nozzle for ejecting a compressed gas towards the coated fiber, and the system is sized such as to solidify the metal on the periphery of the coated fiber over a length of no more than 200 mm.
Abstract:
An autofeeding low application temperature hot melt application system comprises a hot melt tank, a compact integrated auto feed, and operates at temperatures of not more than 260° F.
Abstract:
A coating apparatus and method are disclosed that applies a coating to a product in a uniform and controlled manner. The coating apparatus comprises a feeding stage, an optional pre-treatment stage, at least one coating stage and a finishing stage. The coating stage(s) comprise a coating material feeder and a coating device. The coating device includes an aperture conforming to the perimeter of a substrate to be coated in a first and second dimension. As the substrate passes through the aperture, coating material is applied in a uniform and consistent layer ranging from 0.001 inches to 0.250 inches. The coating material also back fills minor surface imperfections and blemishes on the substrate to achieve a consistent finish across the whole area where coating material is applied. The coating device includes first and second shell portions. The first shell portion has a concave surface surrounding the aperture portion. The concave surface allows for coating material to collect prior to deposition upon the surface of the substrate. The second shell has a substantially flat face and a mirror aperture that aligns with the aperture of the first shell. A groove is formed along the perimeter of the aperture to collect coating material for coating the object as it passes through the apertures of both shells.
Abstract:
A system manages the temperature of thermoplastic material by initiating a default heating cycle in response to a sensor failure. The system may thus continue to heat the thermoplastic material according to the default heating cycle until the sensor can be repaired or replaced. A system controller implements the default heating cycle using a stored profile. That is, the controller causes a heating element to generate heat according to a default heating profile retrieved from a memory. The profile may be determined using historical heating data, user input and/or a factory setting.
Abstract:
A thermally insulated applicator for applying heated thermoplastic liquid includes an applicator body including a thermoplastic liquid supply passage and a heating element for supplying heat to liquid in the supply passage. A dispensing valve module is coupled in thermal contact with the applicator body and includes an outlet in fluid communication with the liquid supply passage. A cover assembly is formed of a thermally insulating plastic and includes first, second and third sides, the first and second sides of the cover assembly respectively covering the first and second sides of the applicator body, and the third side of the cover assembly covering the third side of the dispensing valve module. The first and second sides of the cover assembly each include a plurality of point contact projecting elements respectively supporting the first and second sides of the cover assembly on the first and second sides of the applicator body.
Abstract:
The present disclosure relate to the field of depositing an underfill material between a microelectronic die and a substrate for flip-chip packages with an underfill material dispenser. In at least one embodiment, an underfill material dispenser may include a heater having a plurality of conduits. Other embodiments of the present disclosure may further include multiple dispense needle configurations, angled dispense nozzle exit conduits, conical nozzle exit conduits, and satellite traps.
Abstract:
Dispensers with replaceable actuators and related methods. A representative dispenser includes a sealed fluid chamber with a fluid inlet and a valve seat, a valve member configured to be reciprocally moveable relative to the valve seat, and an actuator interface. The dispenser includes first and second actuators configured to be coupled with the actuator interface for reciprocally moving the valve member. The first actuator is configured to operate by a different motive force than the second actuator. The first actuator can be removed and replaced with the second actuator. The methods involve the ability to replace the first actuator with a second actuator.
Abstract:
Provided are a treating liquid supplying unit, and a substrate processing apparatus and method using the same. Temperature of treating liquid in a treating liquid pipe built into a nozzle arm can be maintained, through heat transfer between the nozzle arm and a standby port and heat transfer between the nozzle arm and a nozzle moving unit, while the nozzle arm is standing by in standby position, while processing is being performed at a processing position, and during movement between the standby position and a processing position. Thus, treating liquid supplied from a nozzle can be maintained at a predetermined temperature by the treating liquid supplying unit, and the substrate processing apparatus and method using the same.