Abstract:
A valve arrangement for applying fluid media, in particular glue, to surfaces, comprising a plurality of individual modules detachably connected to form a row, wherein in the row and between the adjacent individual modules is respectively formed a dividing plane, in which the respectively adjacent individual modules bear one against another, and at least one dividing plane is assigned a heating member for warming the valve arrangement, preferably a plurality of or all dividing planes are respectively assigned a heating member, which is seated in appropriate, mutually opposing receptacles, arranged to both sides of the dividing plane, of the two adjacent individual modules, and cooperates in such a way with those walls of the individual modules which delimit the receptacles that relative movements of the two individual modules in at least one spatial direction are limited or prevented.
Abstract:
A substrate processing apparatus includes one or more substrate processing units 11 to 18 each processing a substrate 3 with a processing fluid; processing fluid supply units 19 and 20 supplying the heated processing fluid to the substrate processing units 11 to 18; and a controller 21 controlling the processing fluid supply units 19 and 20. The processing fluid supply units 19 and 20 include a storage tank 35 storing the processing fluid; a heating heat exchanger 51 heating the processing fluid; and a supply path 52 supplying the processing fluid to the substrate processing units 11 to 18. The supply path 52 includes a bypass path 71 bypassing the heating heat exchanger 51 at an upstream of the substrate processing units 11 to 18. The processing fluid heated by the heating heat exchanger 51 and the processing fluid supplied from the bypass path 71 are mixed to be supplied.
Abstract:
A nanosynthesis apparatus includes an outer tube and an inner tube with surfaces that oppose each other across a gap as part of a reaction chamber. A deposition fluid flows along the reaction chamber to grow nanostructures such as graphene or carbon nanotubes on a substrate in the reaction chamber. The reaction chamber may have an annular cross-section, and the growth substrate may wrap around the inner tube in a helical manner. This configuration can allow a flexible film substrate to travel through the reaction chamber along a path that is significantly longer than the length of the reaction chamber while maintaining a uniform gap between the substrate and the reaction chamber wall, which can facilitate a uniform temperature distribution and fluid composition across the width of the substrate.
Abstract:
The invention relates to a molded body having a polymeric coating in which cladding material is prepared from a polymer solution; carrier material is guided through a feed channel and an outlet opening into a coating chamber, the feed channel traversing a container holding the cladding material; the cladding material is guided through a predefined gap into the coating chamber, and contact is effected between the cladding material and the carrier material to form a preliminary layer; the carrier material and preliminary layer are guided through an outlet opening into a relaxation zone; by setting the withdrawal of the carrier material via the outlet opening into the relaxation zone, the cladding material, the carrier material or both can be altered; and solvent is removed from the polymer layer. The molded bodies are preferably fibers, in particular bristles, such as brush or paint brush bristles.
Abstract:
The invention provides an apparatus for increasing the size of gas-entrained particles in order to render the gas-entrained particles detectable by a particle detector, the apparatus comprising an evaporation chamber (2) and a condenser (7); the apparatus is configured so that vapour-laden gas from the evaporation chamber can flow into the condenser and condensation of the vaporisable substance onto gas-entrained particles in the condenser takes place to increase the size of the particles so that they are capable of being detected by a particle detector.
Abstract:
The invention provides an apparatus for increasing the size of gas-entrained particles in order to render the gas-entrained particles detectable by a particle detector, the apparatus comprising an evaporation chamber (2) and a condenser (7); the evaporation chamber (2) having an inlet (1) for admitting gas into the evaporation chamber and an outlet through which vapour-laden gas may leave the evaporation chamber; the evaporation chamber (2) having disposed therein a heating element (3) and a porous support (6), the heating element being in direct contact with the porous support, wherein the porous support (6) carries thereon a vaporisable substance and the heating element (3) is heatable to vaporise the vaporisable substance to form vapour within the evaporation chamber (2); the condenser (2) being in fluid communication with the outlet of the evaporation chamber, and the condenser (7) having an outlet for connection to the particle detector. the apparatus being configured so that vapour-laden gas from the evaporation chamber can flow into the condenser and condensation of the vaporisable substance onto gas-entrained particles in the condenser takes place to increase the size of the particles so that they are capable of being detected by a particle detector.
Abstract:
A method and apparatus for applying a bone attachment coating to a prosthetic component, the bone attachment coating being formed from a plurality of particles applied to a surface of the prosthetic component. The method comprising: locally exciting the particles so as to increase the kinetic and/or thermal energy of the particles; and applying pressure to the particles by virtue of a press arranged so as to press the particles against the surface of the prosthetic component at an interface between the press and the prosthetic component. The kinetic and/or thermal energy of the particles causes localised heating of the component such that the particles may be embedded into the surface of the prosthetic component.
Abstract:
A valve arrangement for applying fluid media, in particular glue, to surfaces, comprising a plurality of individual modules detachably connected to form a row, wherein in the row and between the adjacent individual modules is respectively formed a dividing plane, in which the respectively adjacent individual modules bear one against another, and at least one dividing plane is assigned a heating member for warming the valve arrangement, preferably a plurality of or all dividing planes are respectively assigned a heating member, which is seated in appropriate, mutually opposing receptacles, arranged to both sides of the dividing plane, of the two adjacent individual modules, and cooperates in such a way with those walls of the individual modules which delimit the receptacles that relative movements of the two individual modules in at least one spatial direction are limited or prevented.
Abstract:
An apparatus for heating a flavored coating and mixing the heated flavored coating with an edible substrate is disclosed. The apparatus comprises a frame adapted to support a kettle, the kettle for containing the flavored coating and the substrate to be mixed, a first heater box operative as a heat source, and a second heater box operative as a heat source. The first heater box is removably secured to the frame to permit removal of the first heater box and substitution therefore with the second heater box.
Abstract:
A dip coating apparatus includes a housing and a workpiece holder movably and rotatably received in the housing. The housing includes an immersing portion configured for carrying out immersion process and a drying portion configured for carrying out drying process. The inner spaces of the immersing portion and the drying portion are communicated with each other. The lifting workpiece holder is configured for fixed workpieces thereon and moving and rotating relative to the immersing portion and the drying portion of the housing. The workpieces is driven by the lifting-rotating to carry out the immersion process and the drying process.