Abstract:
A cabin air compressor assembly includes a cabin air compressor, and a cabin air compressor motor operably connected to the cabin air compressor. The cabin air compressor motor includes a rotor and a stator having a plurality of end windings. A cabin air compressor housing includes at least one cooling airflow hole formed therein. A motor cooling flow is movable across a portion of the cabin air compressor motor to cool the stator and the end windings. A duct extends from the cabin air compressor housing to an adjacent end winding such that a cooling outlet flow provided via the at least one cooling air flow hole is arranged in fluid communication with the end winding.
Abstract:
A piston includes a main body extending between a first end and a second end along a center axis of the piston. The main body further includes a chamber formed within the main body, the chamber having an opening disposed at the first end of the main body. The piston also includes a cap, the cap being coaxial with the main body. A portion of the cap extends into the opening of the chamber of the main body. At least one of the main body and the cap includes a radially extending lip, and the other of the main body and the cap includes a groove. A retaining ring is both disposed partially in the groove and in contact with the radially extending lip so as to connect the cap to the main body.
Abstract:
An Environmental Control System (ECS) is disclosed for providing conditioned air to a conditioned air space. The ECS includes one or more first modules, each with a turbofan engine or Auxiliary Power Un it (APU), a first heat exchanger, a first turbine, a fist water collector, and a first auxiliary fan powered by the first turbine. The ECS also includes one or more second modules. Each second module includes a mixing manifold, a second heat exchanger, an optional second water collector, and a second auxiliary fan powered by a second turbine.
Abstract:
A wire support member for an environmental control system includes a bracket having an inner surface, an outer surface, and a thickness. A first arm projects from the bracket, a first flange projects from a first end of the first arm. The first flange includes a first harness support opening therethrough. A second arm also projects from the bracket parallel to the first arm, and a second flange projects from a second end of the second arm. The second flange has a second harness support opening therethrough. A ratio of a diameter of the first harness support opening and of the second harness support opening to the thickness of the bracket optimizes the routing and support for the wiring.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, is configured to prepare in parallel a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers.
Abstract:
An air duct arrangement (58) for an aircraft (40). The arrangement (58) comprises an environmental control system (ECS) (50). The ECS (50) comprises an air inlet (60) arranged to ingest a low velocity portion of a boundary layer flow adjacent the aircraft fuselage (44), and to deliver a flow of air to an environmental control system air intake (66). The arrangement (58) further comprises an ejector (70) arranged to receive an ECS exhaust (76), and boundary layer air from an aft region of the aircraft (40), and to exhaust air to the ambient airstream at an aft portion of the aircraft (40).
Abstract:
An aircraft environmental conditioning system is disclosed having an air cycle machine for conditioning an airflow comprising hot compressed air by reducing its temperature and pressure. The air cycle machine is disposed in a housing in an unpressurized area of the aircraft, and produces conditioned pressurized air for delivery to a pressurized area of the aircraft. The system also includes a vibration sensor disposed within the housing, and a controller in communication with the vibration sensor that is configured to respond to vibration detected by the vibration sensor.
Abstract:
A method includes generating thrust at one or more engines of an aircraft. The method includes generating first electricity at a first power unit concurrently with generating second electricity at a second power unit. The first power unit and the second power unit are independent of the one or more engines of the aircraft. The first electricity has a first set of electrical characteristics and the second electricity has a second set of electrical characteristics, where the first set of electrical characteristics is different than the second set of electrical characteristics.