Abstract:
A tailgate lift assistor that provides for a reduced force required to rotate or pivot a tailgate of a pickup truck or the like upwardly from a generally horizontal open position to a generally vertical closed position and in one embodiment the lift assistor is combined with a dampening mechanism that dampens the opening of the tailgate.
Abstract:
A control device for a door closer is arranged to control flow of pressure medium within a body part of the door closer and comprises an adjustment member supported by threads on the body part of the door closer, and in cooperation therewith, a separate substantially hollow control member, which is arranged to restrict the flow of the pressure medium when necessary. Turning of the adjustment member with respect to the body part of the door closer brings about movement of the control member in the axial direction of the control device for providing the desired control. The control member is arranged to be attached to the adjustment member in the radial direction so that movement of the control member with respect to the adjustment member in the axial direction is prevented.
Abstract:
A locking device for selectively securing two movable objects in desired positions relative to each other includes a cylinder and a piston movable within the cylinder and defining first and second working chambers of variable volumes. A fluid exchange connection provided on the piston includes a flow chamber having openings that communicate with the working chambers. A valve body slidably received on the piston in sealed relation is biased by a spring into a position closing the opening from the flow chamber to first working chamber. When the fluid pressure in the second working chamber exceeds a predetermined amount and acts on the valve body, the valve body is moved against the spring bias and opens to allow fluid to flow through the fluid exchange connection. In the open position, a larger area of the valve body is exposed to the pressure in the second chamber. A restriction in the flow path between the flow chamber and the first chamber produces a pressure drop between the flow chamber and the first chamber and allows the fluid exchange connection to remain open with a reduced pressure in the second chamber. The device thus provides for a large holding force when the valve body closes the opening and a small resistance to movement after the valve body is moved from closed. By providing two spring-biassed valve bodies acting in opposed directions, control of movements of objects in opposite directions is obtained.
Abstract:
A rotation deceleration device used for a sanitary cleaning device which includes a toilet seat and a toilet cover and is attached to a toilet bowl, thereby injecting warm water in the toilet bowl. The rotation deceleration device includes a cylinder having a hydraulic chamber filled with a control oil; a rotation shaft inserted through the cylinder; a control wall radially projected from the rotation shaft to divide the hydraulic chamber into at least two sub chambers; a control valve provided between the control wall and an inner surface of the cylinder. The control valve has a closing wall opposed to a side surface of the control wall so as to be attachable thereto and also has an engaging member opposed to the other side of the control wall so as to be engageable therewith in accordance with the rotation of the rotation shaft. The control valve is formed of a material which has a higher coefficient of thermal expansion than that of a material forming the control wall and the cylinder.
Abstract:
A door closer (20) is attachable to a door (24) and includes a cylinder (36) which forms a chamber (44) in which a piston element (50) is movable to move fluid from the chamber to a reservoir (82) upon opening of the door. After the door (24) has been opened to a position, for example, of ninety-five to one hundred degrees, continued opening of the door causes the fluid to be compressed within the chamber (44) and to be directed only through a back check valve (95) to the reservoir (82). This results in the development of an adjustable "back check" condition to provide a counterforce to the continued opening of the door. A passageway (150) is formed in cylinder (36) to allow fluid to flow relatively freely from chamber (44) to reservoir (82) until an inward end (56) of piston element (50) has travelled a prescribed distance "x." This prescribed distance of travel represents the opening of door (24) to ninety-five to one hundred degrees from the door's normally closed position.
Abstract:
A door closer wherein a housing defines a fluid-containing space and rotatably supports a shaft which is articulately connected with a pivotable door panel. A piston in the housing divides the space into a chamber and a compartment and has a toothed rack which mates with a pinion on the shaft so that the piston moves in the housing in response to rotation of the shaft as a result of pivoting of the door panel and vice versa. One or more springs in the chamber bias the piston in a direction to pivot the door panel toward closed position. A channel in the housing establishes communication between the chamber and the compartment during an initial stage of movement of the door panel from closed position at which time the piston moves in a direction to reduce the volume of the chamber. A bypass in the piston provides a path for the flow of fluid from the chamber into the compartment during a following stage of pivoting of the door panel toward open position, and the cross-sectional area of such path increases gradually in a direction from the chamber toward the compartment. The bypass can be provided in the peripheral surface of the piston or in the peripheral surface of the body of a check valve which is installed in the piston and serves to permit the fluid to flow from the compartment into the chamber during pivoting of the door panel toward closed position.
Abstract:
A door closer including: a body defining a chamber therein; a piston slidably supported within the chamber, and dividing the chamber into first and second cavities either side of the piston, which in use receive liquid; a biasing device for biasing the piston towards the first cavity; a passageway connecting the first cavity to the second cavity for permitting the flow of fluid therebetween; a blocking member for controlling the flow of liquid through the passageway between the cavities; a moveable member moveable between first and second positions, wherein when the moveable member is in its first position the moveable member causes or permits the blocking member to assume a blocking position, thus preventing or at least inhibiting the flow of liquid from the first to the second cavity, and wherein when the moveable member is in its second position the moveable member causes or permits the blocking member to assume a non-blocking position, thus permitting the flow of liquid from the first to the second cavity; and a permanent magnet positioned adjacent or close to the moveable member for holding the moveable member in its first position; wherein the door closer includes a pole switching device that can produce a magnetic field that is in opposition to the magnetic field of the permanent magnet to effectively cancel out or overcome the magnetic field of the permanent magnet and produce a net magnetic field that is either zero or in the opposite direction to the magnetic field of the permanent magnet so as to effect movement of the moveable member between its first and second positions.
Abstract:
A door drive includes a housing and at least one regulating valve for the adjustable regulation of a fluid flow within the door drive.The one regulating valve or at least one of the several regulating valves includes two ends with respectively one engaging part, in particular for a tool, wherein the one regulating valve or the regulating valves extend/s in such a manner through the housing that the engaging parts for adjusting the one regulating valve or the regulating valves may be manipulated from outside the housing.
Abstract:
This device comprises: a pneumatic cylinder (34), a gas generator (36), a chamber (6, 8) for atmospheric venting, with: an inlet with a connection to the gas generator (36), a first outlet, a second outlet, a valve (16) having a first side (24) and a second side (26) which can change position under the effect of a gas generated by the gas generator and comprising a passage (22) between the two sides (24, 26) obstructed by means which are clearable based on the pressure, where said shuttle-valve (16) is mobile between: a first position allowing connection to the first outlet and the second outlet and isolating the inlet from the first outlet and the second outlet; and a second position allowing connection of the inlet with the first outlet and isolating the second outlet from the inlet and the first outlet.