Abstract:
The valve operating apparatus includes an upper and lower rocker arm for each valve to be controlled, each having a straight section and a curved section. The lower rocker arm is mounted at one end for pivotal movement about a fixed axis, its other end acting against the valve to be controlled. The upper rocker arm is mounted at one end for pivotal movement about a shiftable or movable axis. Depending on where the upper rocker arm has been shifted to in relation to the camshaft and concomitantly where the upper arm has been shifted in relation to the lower arm the lift and duration of valve opening is controlled. A timing mechanism is actuated by the valve operating apparatus so as to angularly displace the camshaft on which the above alluded to cam is mounted in a direction to advance or retard the valve opening and closing with respect to the crankshaft and hence in relation to the piston movement produced by the crankshaft.
Abstract:
A device for feed control of valve-controlled internal combustion engines, with the combustion chamber capable of being closed off by an intake valve toward the intake passage, and with a further shutoff element being provided in the intake passage. This further shutoff element is a slotted flat slide valve which is movable in an oscillating manner and cooperates with counter slots. The counter slots are formed by vanes arranged in the housing. The flat slide valve is drivable by a cam.
Abstract:
A product for applying tension is disclosed. A block may have a first passage opening into the block. A body may have a first manifold and may be positioned against the block so that the first passage is open to the first manifold. The body may have a flow path for providing fluid from the first manifold to a second manifold and there through to a pressure chamber. The flow path may include a series of channels and may be configured to allow substantially unimpeded flow from the first manifold to the second manifold, and to impede flow from the second manifold to the first manifold. The flow path may be free of movable components.
Abstract:
A mechanism for varying crankshaft timing on a belt/chain driven, dual crankshaft opposed-piston engine includes sprockets on corresponding ends of the two crankshafts, connected by a belt or chain which is tensioned by two or more tensioners. By changing the position of the tensioners the length of the two spans of the belt/chain are varied and thus the phase between the crankshafts is varied.
Abstract:
A device for setting the relative rotational position of a camshaft (2, 3) of an internal combustion engine (11) relative to a crankshaft (1) driving the camshaft (2, 3), having a traction mechanism drive (4) wrapping around the crankshaft (1) and the camshaft (2, 3), which includes a loaded traction-mechanism section (8, 9) and a non-loaded traction-mechanism section (7), and a tensioning device (5, 6, 10) for changing the length of the loaded traction-mechanism section (8, 9). The tensioning device (5, 6, 10) is supported on the internal combustion engine (11) and has an adjustment device (20) that can be fixed.
Abstract:
An engine comprising a cylinder housing (105) and an engine cylinder (110) at least partially housed within the housing (105). The cylinder (110) has a cylinder wall (118) extending about a cylinder axis (119), and a first cylinder end (120) provided at one axial end of the cylinder wall (118). A piston (115) is mounted for movement within the cylinder (110) in the direction of the cylinder axis (119). The piston (115), the cylinder wall (118) and the first cylinder end (120) define a cylinder chamber (140). The cylinder (110) is moveable in the direction of the cylinder axis (119) relative to the housing (105) to vary the volume of the cylinder chamber (140) for any given position of the piston (115) relative to the housing (105).
Abstract:
A device for varying an effective volumetric displacement and/or an effective volumetric ratio of an engine which comprises a piston and a cylinder, the device comprising a first device for controlling the effective volumetric ratio of the engine by modifying a starting point of a stroke of the piston with respect to the cylinder, and a second device for controlling the effective volumetric displacement of the engine by discharging into an inlet pipe excess gases let into the cylinder of the engine.
Abstract:
A setting assembly in a piston-type internal-combustion engine includes a setting device connected to a component for adjusting its position; a power device; and a gearing having an input member connected to the power device for driving the gearing by the power device, an output member connected to the setting device for driving the setting device by the gearing; a down-stepping arrangement forming part of the gearing for providing a substantially down-stepped transmission ratio between the input and output members; and a reversing arrangement for reversing the direction of motion of the output member.