Abstract:
At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.
Abstract:
The process for combustion of coal dust with combustion air in burners and for reducing the production of NO.sub.x during the combustion. Combustion air is fed to the burners in form of primary air and secondary air. The burners are supplied coal dust through the primary air in a mixture of coal dust and primary air. A primary gas is generated with combustible gaseous components from the mixture of coal dust and primary air, through pyrolysis of the coal dust in the ignition region of the burners. In the ignition region, there is lowered the mean ratio of oxygen components in the primary gas to the oxygen amount required to burn freely released combustible gaseous components of the primary gas by reducing the oxygen component in the primary gas and/or injecting the primary gas with a combustible external gas.
Abstract:
A cyclone furnace combustion system and method in which a burner is mounted relative to a cyclone furnace for discharging a relatively fine particulate fuel in an axial direction into the furnace. Relatively coarse particulate fuel is discharged into the furnace in a tangential relationship thereto and air is provided in the furnace to support combustion of the fuels.
Abstract:
A fuel injector for use in a furnace is provided. The fuel injector may include a generally tapered configuration and a nozzle having a plurality of open sections, which preferably have an elliptical configuration, arranged at the output for providing rich segregated fuel streams.
Abstract:
An improved pulverized coal burner that reduces the formation of nitrogen oxides. The coal burner includes fuel splitters that separate a mixture of primary air and coal into a plurality of streams while the mixture is discharged through a diffuser having a plurality of partially open areas and a plurality of blocked areas. After passing through the diffuser, the plurality of streams are discharged into a furnace to be burned. The plurality of partially open areas and blocked areas are created by removing sections of the diffuser and replacing the removed sections with fuel splitters. Creation of these discrete streams delays mixing with secondary air. Because primary air is supplied in sub-stoichiometric quantities, the coal in these split streams will be burned under fuel-rich conditions for the first 100 to 200 milliseconds of combustion, until the delayed mixing of secondary air occurs. Combustion in a fuel-rich environment retards formation of nitrogen oxides in two ways. First, nitrogen that is part of the volatile matter that is evolved during the early stages of combustion will tend to form molecular nitrogen rather than react with oxygen to form nitrogen oxides. Second, an oxygen deficiency will reduce formation of nitrogen oxides from atmospheric nitrogen.
Abstract:
A burner including a first pulverized coal entrained fluid flow conduit; an inner hydrogen conduit; and a hydrogen oxidant conduit positioned between the first pulverized coal entrained fluid flow conduit and the inner hydrogen conduit; an outlet of the inner hydrogen conduit positioned a first distance from an outlet of the hydrogen oxidant conduit such that hydrogen output from the outlet of the inner hydrogen conduit passes through a portion of the hydrogen oxidant conduit to the outlet of the hydrogen oxidant conduit; and the outlet of the hydrogen oxidant conduit being a second distance from an outlet of the first pulverized coal entrained fluid flow conduit such that the hydrogen and the hydrogen oxidant output from the outlet of the hydrogen oxidant conduit passes through a portion of the first pulverized coal entrained fluid flow conduit for being output from the burner.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A solid-fuel burner includes: a venturi having a constricting portion where the transverse cross section of a fuel passage is reduced in a fuel nozzle for supplying a solid fuel; and a fuel concentrator for diverting the flow in the nozzle outward in the wake side of the venturi, and the nozzle is formed so that (a) the aperture in the vicinity of an opening portion of a boiler furnace wall surface has a flat shape, (b) cross-sectional shape thereof orthogonal to a nozzle center axis C on the outer peripheral wall of the nozzle is circular in a transverse cross section up to the constricting portion of the venturi, (c) a portion that has a gradually increasing degree of flatness is provided between the constricting portion and the opening portion, and (d) the flat shape in the opening portion is where the degree of flatness reaches a maximum.
Abstract:
A burner nozzle for delivering fuel to a burner flame in a furnace includes an inner cylinder and an outer cylinder that are both hollow. The inner cylinder is at least partly disposed within the outer cylinder and axially aligned with it, and is movable in an axial direction relative to the outer cylinder. One end of the inner cylinder has at least one outward projection extending in a radial direction from the outer surface of the cylinder, this projection serving to decrease the free cross-sectional area between the inner cylinder and the outer cylinder at that end of the inner cylinder.