Abstract:
The subject matter herein relates to coal mills and, more particularly, inferential pulverized fuel flow sensing and manipulation within a coal mill. Various embodiments provide systems, methods, and software to manipulate a primary air flow rate and a coal feed rate into a coal mill to produce a target pulverized fuel flow. Some embodiments include sensing a differential pressure between two or more locations within a coal mill to estimate a recirculated load of coal at one or more stages within the coal mill.
Abstract:
A primary air system for a combustion plant provides a flow of primary air to at least one coal pulverizer, which emits pulverized coal in a downstream direction to a furnace. The primary air system includes a first primary air line for feeding hot primary air to the coal pulverizer and a second primary air line for admixing of cold primary air into the hot primary air line at a mixing location positioned upstream of the coal pulverizer. A control system shuts off the flow of primary air to the coal pulverizer, when the coal pulverizer is being repaired or serviced while the furnace is in operation. The control system includes a first flow control butterfly valve disposed in the first primary air line at a position upstream of the mixing location and a second flow control butterfly valve disposed in the second primary air line at a position upstream of the mixing location. A shut-off butterfly valve, disposed in the primary air line intermediate the mixing location and the coal pulverizer, includes a tandem wing supported at a cental location and movable between an open position and a closed position. The tandem wing has parallel, first and second wings forming a space therebetween. A pressure relief line provides fluid communication with the space between the first and second wings when the tandem wing is in the closed position. A pressure relief butterfly valve is disposed in the pressure relief line.
Abstract:
In a coal burning boiler apparatus, temperature of the pulverized coal to be fed to the boiler can be set depending on the property of the combustion coal, so that stable ignition and combustion can be made regardless of the property of the combustion coal fed.Provided are a coal burning boiler 1, a coal pulverizer 2 for pulverizing massive coal 6 into fine powder, a temperature sensor 18 for detecting temperature of the primary air 35 for entraining the pulverized coal to the coal burning boiler, regulators 9, 12, 13 and 14 for regulating the temperature of the primary air and a controller for controlling the primary air temperature regulators on the basis of detected result of the temperature sensor so as to make the primary air have a given temperature.
Abstract:
The invention concerns a method of grinding combustible products by means of closed-circuit pendulum ring roller mills, comprising a top ring, serving as a support for the running track of the mill, and a base structure provided with a grinding sole plate, preventing the deposition of combustible particles in the air inlet circuit of the mill. The invention also concerns closed-circuit pendulum ring roller mills for implementing such a method.
Abstract:
An airlock-feeder for a coal pulverizing system which includes a raw coal bunker, a pulverizer, and a vertically extending coal duct forming a raw coal flow path from the raw coal bunker to the pulverizer. The airlock-feeder comprises upper, middle and lower, vertically separated valves disposed in the raw coal flow path. Each valve has a seal member, a disc pivotally mounted at a centerline, and a pneumatic actuator. At least one or two of the valves are closed at any given time thereby providing a positive air-tight seal.
Abstract:
A method and apparatus retrofitted to a multiple-intertube pulverized-coal burner to reduce NO.sub.x emissions of roof fired boilers. An internal two stage process controls the amount of secondary air which flows to the burner. The first stage includes a secondary air damper and air flow station to regulate the amount of air which flows into a windbox of the burner. The second stage includes an outlet formed in the hot primary air duct, an air plenum which communicates therewith, and a plurality of interjectory air ports which correspond with the burners in number and position along a front wall of the boiler and which communicate with the air plenum. The interjectory air ports inject interjectory air into a combustion chamber of the boiler at a substantially 90 degree angle to the direction of a plurality of burner tips of each burner and supplies the balance of the required theoretical combustion air needed to complete combustion of the fuel. A plurality of probes measure the amount of primary air, secondary air and interjectory air and signal a command loop circuit to adjust the secondary air dampers and interjectory air ports accordingly. The burner tips extend into the central core of each windbox and mixes with the incoming secondary air to provide for the fuel rich mixture.
Abstract:
A method and apparatus retrofitted to a multiple-intertube pulverized-coal burner to reduce NO.sub.x emissions of roof fired boilers. An internal two stage process controls the amount of secondary air which flows to the burner. The first stage includes a secondary air damper and air flow station to regulate the amount of air which flows into a windbox of the burner. A baffle plate assembly which includes a plurality of baffle plates further limits the amount of air which flows to the core of the burner for combustion of the fuel. The baffle plates create a pressure drop within the windbox which forces or diverts a quantity of air to the periphery of the burner. The second stage includes an outlet formed in the hot primary air duct, an air plenum which communicates therewith, and a plurality of interjectory air ports which correspond with the burners in number and position along a front wall of the boiler and which communicate with the air plenum. The interjectory air ports inject interjectory air into a combustion chamber of the boiler at a substantially 90 degree angle to the direction of a plurality of burner tips of each burner and supplies the balance of the required theoretical combustion air needed to complete combustion of the fuel. A plurality of probes measure the amount of primary air, secondary air and interjectory air and signal a command loop circuit to adjust the secondary air dampers and interjectory air ports accordingly.