Abstract:
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field BG superimposed on the B0, where the BG comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency ω in a laboratory frame. The Fourier-encoded NMR signal is detected.
Abstract:
In a method and apparatus to generate a magnetic resonance (MR) image in a volume of interest of an examination subject, the magnetization is excited in an additional volume in the subject by at least one RF pulse, in order to achieve a desired magnetization in the volume of interest. The additional excitation volume differs at least partially from the volume of interest. For this purpose, at least one MR overview image of the examination subject is analyzed automatically to determine a position of at least one anatomical structure of the examination subject, from which the volume of interest is automatically determined. The additional excitation volume is automatically determined using the position of the at least one anatomical structure. The MR image in the volume of interest is acquired with excitation of the magnetization in the automatically determined additional excitation volume.
Abstract:
In MRS measurement using magnetic resonance highly precise results are efficiently obtained with coincidence of axes with axes in positioning image. In measurement according to the PRESS method for a plurality of regions each localized (specified) with a set of perpendicularly intersecting three slices, wherein one or two slices are common to the sets of three slices localizing the regions, and slices not common do not intersect, a slice not common to those of a region to be selectively excited is excited with a radio frequency magnetic field of which phase is different by 180 degrees from that of a radio frequency magnetic field used for exciting the region to be selectively excited a number of times equal to the number of common slices, and during the measurement of the region to be selectively excited, a group of regions other than the region to be selectively excited are thermally equilibrated.
Abstract:
A method of performing nuclear magnetic resonance imaging of a body, comprising: immerging said body in a static magnetic field for aligning nuclear spins along a magnetization axis; exposing said body to a gradient pulse and to a transverse radio-frequency pulse for performing slice-selective excitation of said nuclear spins, thus flipping the nuclear spins of atoms contained within a slice of said body; detecting a signal emitted by excited nuclear spins; and reconstructing a magnetic resonance image of said slice of the body on the basis of the detected signal; the method being characterized in that said radio-frequency pulse is constituted by a train of slice-selective elementary pulses, approximately equivalent to a train of elementary rectangular pulses with constant frequencies which are designed for compensating for inhomogeneity of the radio-frequency field within the body.
Abstract:
In a method to acquire a magnetic resonance image data set of a target volume with a magnetic resonance device, wherein the target volume is composed of a number of sub-volumes defined in a two-dimensional plane orthogonal to the readout direction, for each sub-volume, in order to acquire a partial data set of a sub-volume, a targeted excitation of the sub-volume and a data acquisition from that sub-volume to measure the partial data set take place by radiation of a first radio-frequency pulse acting in a first direction of the plane and radiation of a second radio-frequency pulse acting in a second direction that is orthogonal to the first direction. The partial data sets are combined into the magnetic resonance data set.
Abstract:
According to a Magnetic Resonance Imaging (MRI) apparatus, a scanning-parameter limit calculating unit creates examination information that represents scanning conditions for collection of magnetic resonance signal data based on scanning parameters set by an operator; a scanning-condition edit/scan positioning unit creates a time chart that indicates the type and a sequential execution order of an event to be executed when collecting magnetic resonance signal data based on the examination information created by the scanning-parameter limit calculating unit, and causes a time-chart display unit to display the created time chart.
Abstract:
A magnetic resonance method for using radio frequency pulses for spatially selective and frequency selective or multidimensionally spatially selective excitation of an ensemble of nuclear spins with an initial distribution of magnetization in a main magnetic field aligned along a z-axis, wherein a spin magnetization with a given target distribution of magnetization is generated, and for refocusing the spin magnetization, is characterized in that the radio frequency pulse is used as a sequence of sub-pulses of independent duration, courses of gradients and spatial and/or spectral resolution, comprising one or more large angle RF pulses with tip angles greater than or approximately equal to 15°, which generate a gross distribution of magnetization approximating the target distribution of magnetization or a desired modification of the distribution of magnetization with a mean deviation less than or approximately equal to 15°, wherein the actual effect of the LAPs on the distribution of spin magnetization before the radio frequency pulse is used is calculated by integration of the Bloch equations without small angle approximation, and one or more small angle RF pulses=SAPs with tip angles less than or approximately equal to 15° reducing the difference between the target distribution of magnetization and the gross distribution of magnetization caused by the LAPs.
Abstract:
A method of MR imaging applies a magnetic field Bgrad1 having a spatially non-linear dependence to select a volume of at least one curved slice. The slice is described by its midsurface AM, a volume of the selected slice being made up of nν partial volumes in each of which gradients of at least one pair of remaining superimposed magnetic fields Bgradi (i>1) exhibit an angle dependence of 70° to 110° with respect to one another and with respect to the normal of the midsurface AM. At least one superimposed magnetic field of the respective pair exhibits a spatially non-linear dependence and combinations of these pairs are used for spatial encoding. In this way, curved surfaces can be mapped efficiently in high resolution and the method can be adapted to the slice shape.
Abstract:
A radio-frequency (RF) shimming apparatus (50) for use in a magnetic resonance imaging (MRI) system (10) comprises of a spatial sensitivity unit (30) which determines a transmit spatial sensitivity distribution of at least one RF coil (18,18′). A selection unit (32) selects an excitation pattern with a through-plane, one-dimensional excitation k-space trajectory. The through-plane, one-dimensional excitation k-space trajectory is curved into at least a second dimension by an optimization unit (34) according to the generated spatial sensitivity distribution. The optimization unit (34) supplies the curved excitation k-space trajectory to at least one transmitter (24) which causes the at least one RF transmit coil (18,18′) to transmit the selected excitation pattern with the curved excitation k-space trajectory.
Abstract:
An MRI includes imaging coils. The MRI includes receiving coils. The MRI includes a controller causing the imaging coils to produce RF pulses at every repetition time so different parts of a patient are receiving excitation by RF pulses at different rates and k space data are acquired at each repetition time by the receiving coils to form images of the patient with the k space data. A method for an MRI includes the steps of causing with a controller imaging coils to produce RF pulses at every repetition time so different parts of a patient are receiving excitation by RF pulses at different rates. There is the step of acquiring k space data at each repetition time by receiving coils. There is the step of forming images of the patient with the k space data using approaches such as Fourier transformation or filtered back projection.