Abstract:
An image display apparatus includes a liquid crystal panel having a liquid crystal layer disposed between a pair of substrates, and an optical compensation plate pair including a first optical compensation plate and a second optical compensation plate, the first optical compensation plate being formed of a negative uniaxial crystal and the second optical compensation plate being formed of a positive uniaxial crystal. The optical compensation plate pair is configured such that an optical phase difference caused by a difference in thickness between the first optical compensation plate and the second optical compensation plate cancels an optical phase difference generated by the liquid crystal panel.
Abstract:
A micro structure which is preferred as an original plate of an antireflection, a mold of nano imprint or injection molding is obtained by a single particle film etching mask on which each particle is precisely aligned and closest packed in two dimensions. A single particle film etching mask is produced by a drip step wherein a dispersed liquid in which particles dispersed in a solvent are dripped onto a liquid surface of a water tank, a single particle film formation step in which a single particle film which consists of the particles by volatizing a solvent is formed, and a transfer step in which the single particle film is transferred to a substrate. The single particle film etching mask on which particles are closest packed in two dimensions, has a misalignment D(%) of an array of the particles that is defined by D(%)=|B−A|×100/A being less than or equal to 10%. However, A is the average diameter of the particles, and B is the average pitch between the particles in the single particle film.
Abstract:
An optical element includes a base body having a surface; and a plurality of structures arranged with fine pitches equal to or less than a wavelength of visible light on the surface of the base body, wherein an elastic modulus of a material forming the structure is equal to or greater than 1 MPa and equal to or less than 1200 MPa, an aspect ratio of the structure is equal to or greater than 0.6 and equal to or less than 5, and a coefficient of kinetic friction of the surface of the base body on which the plurality of structures are formed is equal to or less than 0.85.
Abstract:
The present invention relates to a structure comprising: a resin pattern (A)3 formed on a base material 1 and having structure units of a predetermined shape; and a resin pattern (B)5 formed on a surface of the resin pattern (A)3 and having microscopic structure units, of a predetermined shape, arranged at a period shorter than or equal to a wavelength range of a using light, and to a method for producing the structure, comprising the steps of: (i) forming a resin layer 2 on the base material 1 and subjecting the resin layer 2 to an exposure-development process so as to form the resin pattern (A)3; and (ii) subjecting a surface of the resin pattern (A)3 to an exposure-development process so as to form the resin pattern (B)5, wherein the steps (i) and (ii) are sequential.
Abstract:
A display may be based on a display unit that is mounted within a chassis. The display unit may be a liquid crystal display unit. A backlight may be used to illuminate the display unit. The backlight may include a light guide plate. Light from a light source may be launched into an edge of the light guide plate. Scattered light from the light guide plate may travel vertically along a vertical axis that is perpendicular to the plane that contains the light guide plate. The scattered light may pass through the display unit and may serve as backlight for the display. The light guide plate may be mounted within a rectangular opening in the chassis. The edges of the rectangular opening and the edges of the light guide plate may be configured to reduce excessive reflections. These edges may have reflection-reducing coatings, non-planar surfaces, and other reflection-reducing configurations.
Abstract:
The present invention relates to a display apparatus, which comprises: a display panel; a front filter which is arranged on the front side of a display module, wherein the display panel and the front filter are spaced from each other at an interval of 3 mm or less.
Abstract:
A layer of material, such as crystalline indium tin oxide (ITO), is formed on top of a substrate by heating the material to a high temperature, while a temperature increase of the substrate is limited such that the temperature of the substrate does not exceed a predetermined temperature. For example, a layer including amorphous ITO can be deposited on top of the substrate, and the amorphous layer can be heated in a surface anneal process using radiation while limiting substrate temperature. Another process can pass electrical current through the amorphous ITO. In another process, the substrate is passed through a high-temperature deposition chamber quickly, such that a portion of a layer of crystalline ITO is deposited, while the temperature increase of the substrate is limited.
Abstract:
To provide a liquid crystal display device in which it is possible, with a simple configuration, to avoid a bright spot defect caused by a polishing flaw, called a dimple, formed in a surface of an observer side substrate of a liquid crystal display panel.A liquid crystal display device includes: a liquid crystal display panel having a first substrate, a second substrate disposed on an observer side of the first substrate, and a liquid crystal layer sandwiched between the first substrate and the second substrate, and a transparent cover affixed by means of a first bonding member to a surface of the liquid crystal display panel on the observer side, wherein the transparent cover has an optical member affixed by means of a second bonding member to a surface of the transparent cover facing the second substrate, the second substrate has a chemically polished surface on the observer side, the first bonding member, as well as making direct contact with both the polished surface of the second substrate and the optical member, covers all of a surface portion of the second substrate facing a display area, and the first bonding member is 30 to 200 μm in thickness, while the second bonding member is 10 to 25 μm in thickness.
Abstract:
A touch panel includes a first substrate having a first resistance film, a second substrate having a second resistance film and a wiring electrode. The first resistance film and the second resistance film are arranged to face each other. A conductive connection member is interposed between the first substrate and the second substrate and electrically connects the first resistance film to the first wiring electrode. The touch panel further-includes auxiliary electrodes partially covered with the first wiring electrode and in contact with the conductive connection member. The resistivity of the auxiliary electrodes in the contact surface with the conductive connection member is lower than the resistivity of the first wiring electrode in the contact surface with the conductive connection member.
Abstract:
According to a manufacturing method of a multilayer film according to one aspect of the present invention, at the step of applying a coating liquid prepared by dissolving a plurality of monomers or polymers in at least one solvent onto a substrate and subsequently drying the coating liquid, the solvent is allowed to penetrate into the substrate at a specified speed. This causes concentration distribution of the solvent within the coated layer in the thickness direction thereof, and thus a multilayer film separated into an upper layer and a lower layer can be formed by one coating. Accordingly, a multilayer film having a different function in each layer can be formed by one coating.