Abstract:
A method for depositing a coating on a substrate (100), including successively depositing a thin intermetallic layer (110) on the substrate (100), so as to obtain an external part (10), and annealing the external part (10) in a dedicated enclosure.
Abstract:
The purpose of the present invention is to obtain a protective film having a segmented structure that is stable in terms of strength and that prevents the destruction or damage of a groove structure due to load deformation stress from outside and inside forces, by means of, in particular, a structure that connects a side surface of a groove to the bottom section of the groove and a structure of the bottom section of the groove. The present invention is a protective film having a segmented structure, the film being formed by depositing a film on a base material, wherein the protective film is obtained by depositing the protective film, after machining a groove in the base material, forming spaces between the segmented protective film on the base material, and the vertical cross-sectional surface of a part where the groove side surface and the groove bottom surface intersect is connected by a downward convex curve and the vertical cross-sectional surface of the bottom section of the groove is a downward convex curve or a straight line.
Abstract:
The disclosure related to a method for making a nanowire structure. First, a free-standing carbon nanotube structure is suspended. Second, a metal layer is coated on a surface of the carbon nanotube structure. The metal layer is oxidized to grow metal oxide nanowires.
Abstract:
The invention relates to a method for producing a sliding surface on a machine element, in particular a cam follower, wherein the machine element is first provided with a coating on at least part of the surface of the machine element, into which coating a surface structure is then introduced by laser structuring. In order to be able to introduce a surface structure that does not penetrate the coating even in the case of low layer thicknesses (s1) of the coating, the introduction of the surface structure is performed by laser interference structuring.
Abstract:
The present invention relates to processes for obtaining metal oxides by irradiation of low energy laser pulses of metal layers, wherein said metals can be formed as simple metals, alloys, or multilayers. The present invention performs the oxidation of a thin metal film deposited on a substrate; e.g., glass (SiO2) or silicon (Si) by a laser-irradiation time of a few nanoseconds to femtoseconds at high repetition rate, time necessary to achieve a stoichiometry and a well-defined microscopic structure. Through the processes of the invention, it is possible to obtain complex structures and metal oxides at room temperature in a very short time and with very low energy consumption.
Abstract:
Optically transparent diamond-like carbon (DLC) thin films are formed using relatively low-temperature deposition conditions followed by a post-deposition bleaching step. The bleaching can include exposure of an as-deposited thin film to UV laser radiation, which reduces the concentration of defects in the film. The method is compatible with temperature-sensitive substrates, and can be used to form water clear DLC layers on glass substrates, for example, which can be used in display applications.
Abstract:
A metal dot substrate includes metal-containing metal dots having a maximum outside diameter and height of 0.1 nm to 1,000 nm formed on a substrate and located in a plurality of island regions.
Abstract:
The subject of the invention is a process for obtaining a substrate coated on at least part of its surface with at least one film of oxide of a metal M the physical thickness of which is 30 nm or less, said oxide film not being part of a multilayer comprising at least one silver film, said process comprising the following steps: at least one intermediate film of a material chosen from the metal M, a nitride of the metal M, a carbide of the metal M and an oxygen-substoichiometric oxide of the metal M is deposited by sputtering, said intermediate film not being deposited above or beneath a titanium-oxide-based film, the physical thickness of said intermediate film being 30 nm or less; and at least part of the surface of said intermediate film is oxidized using a heat treatment, during which said intermediate film is in direct contact with an oxidizing atmosphere, especially air, the temperature of said substrate during said heat treatment not exceeding 150° C.
Abstract:
The present invention relates to processes for obtaining metal oxides by irradiation of low energy laser pulses of metal layers, wherein said metals can be formed as simple metals, alloys, or multilayers. The present invention performs the oxidation of a thin metal film deposited on a substrate; e.g., glass (SiO2) or silicon (Si) by a laser-irradiation time of a few nanoseconds to femtoseconds at high repetition rate, time necessary to achieve a stoichiometry and a well-defined microscopic structure. Through the processes of the invention, it is possible to obtain complex structures and metal oxides at room temperature in a very short time and with very low energy consumption.
Abstract:
Provided are a method of manufacturing a gallium nitride-based compound semiconductor light-emitting device with a low driving voltage (Vf) and high light outcoupling efficiency, a gallium nitride-based compound semiconductor light-emitting device, and a lamp. In the method of manufacturing the gallium nitride-based compound semiconductor light-emitting device, a transparent conductive oxide film 15 including a dopant is laminated on a p-type semiconductor layer 14 of a gallium nitride-based compound semiconductor device 1. The transparent conductive oxide film 15 is subjected to a laser annealing process using a laser after the lamination of the transparent conductive oxide film 15.