Abstract:
A system and method is described for allowing a mobile communication device using location data to control electronic devices located within a predefined area of coverage.
Abstract:
An electric power-generating device (1) comprising a movable portion forming a magnetic circuit fitted with a core (5) and branches (11, 12, 13, 14) coupled magnetically to the said core, a fixed portion provided with a permanent magnet (31, 32, 33, 34), a mechanism for rotating the movable portion about an axis of rotation (20) supporting the said core, and an electric coil (21) wound around the said core in order to gather the electric power obtained when the said movable portion rotates, the said generating device comprising priming and driving means (51, 52) coupled to control means (71, 72) in order to establish a priming of the said mechanism and interacting with the said movable portion in order to drive it by releasing a priming power at the end of travel of the said control means.A remote control provided with the generating device.
Abstract:
Supercapacitor/ultracapacitor technology is applied to hand-held remote-control devices, thereby providing a unit that does not require batteries. In terms of hardware, a device according to the invention includes a hand-held enclosure having a plurality of operator controls supported thereon, a wireless control signal generator, and electronic circuitry interconnecting the operator controls to wireless control signal generator. The circuitry causes the generator to transmit a wireless signal in response to the operator controls so as to affect the operation of the appliance. The device further includes a source of electrical energy to power the circuitry, the source of electrical energy including a supercapacitor or ultracapacitor, and an input to receive externally applied energy to recharge the supercapacitor or ultracapacitor. The input to receive externally applied energy converts mechanical or electrical energy into direct current (DC). Depending upon the embodiment, the energy generator system may be integral to, or separate from, the housing of the unit. A mechanical input includes a miniature generator in electrical communication with the supercapacitor or ultracapacitor for recharging purposes. The input itself may comprise a crank supported on the housing, with a gear train mechanically coupling the crank to the generator, a turnable dial supported on the housing and a spring mechanism coupling the dial to the generator, or a lever arm supported on the housing and a ratchet mechanism coupling the lever arm to the generator.
Abstract:
A remote control device for remotely controlling a toilet device is provided. The remote control device includes a casing, a power generation device, buttons, and a link mechanism. The casing forms a contour of the remote control device. The power generation device is housed in the casing and is capable of generating a power by being pressed. The buttons is provided on a surface of the casing and each is configured to activate a function of the toilet device. The link mechanism is configured to move so as to press the power generation device when one of the buttons is pressed. The buttons is supported on the casing by an elastic member so that, when one of the buttons is pressed to cause motion of the link mechanism, one other of the buttons not pressed is not affected by the motion of the link mechanism.
Abstract:
A wireless transmitting device 1 using electric power supplied from a power generating element 100 which can generate the electric power by utilizing mechanical energy externally applied includes an electric storage element 3 for storing the electric power generated by the power generating element 100; and a wireless transmitting unit 4 for performing a wireless transmitting operation with using the electric power supplied from the electric storage element 3. The wireless transmitting unit 4 is capable of setting a power consumption amount consumed at one time of the wireless transmitting operation. The wireless transmitting device 1 is configured to set timing when the wireless transmitting unit 4 consumes the electric power and the power consumption amount of the wireless transmitting unit 4 according to electromotive force of the power generating element 100.
Abstract:
A facility comprising systems, methods, and techniques for collecting data indicative of energy consumption and/or energy production by energy systems and devices and providing the data to interested users and devices in real-time is described. The facility may comprise an energy gateway device coupled to one or more monitored devices, one or more energy data extraction servers, and one or more client computers. The energy gateway devices and energy data extraction servers are coupled to a network and are configured to collect energy consumption and/or energy production data from one or more devices and provide an indication of the collected data in real-time or near real-time. The facility may collect current energy consumption or production rates, predicted energy consumption or production levels over a future period of time, and/or amounts of energy that has been consumed or produced by the device over a previous period of time.
Abstract:
Methods, apparatuses, systems, and computer-readable media for communicating via an electronic device for use in a mouth environment of an animal and resistant to damage from bodily fluids and pressure. The device can be anchored to a tooth or a teeth of the mandible, or implanted in (or attached to an implant in) the maxilla or mandible. The device includes: a power device, which can power the apparatus, a memory storage device, which can store and recall data; a communications subsystem, which communicates with one or more remote devices; an output device, which creates stimulus directly or indirectly observable in the mouth environment; an input device, which can create signals according to activity in the mouth environment and can send them to the memory storage device and/or processor; and a processor coupled to the memory storage device, the communication subsystem, the output device and the input device.
Abstract:
Methods, apparatuses, systems, and computer-readable media for providing a user interface for communicating via an electronic device for use in an oral cavity of an animal and resistant to damage from bodily fluids and pressure. The device may include: a power device, which can power the apparatus, a memory storage device, which can store and recall data; a communications subsystem, which communicates with one or more remote devices; an output device, which creates stimulus directly or indirectly observable in the mouth environment; an input device, which can create signals according to activity in the mouth environment and can send them to the memory storage device and/or processor; and a processor coupled to the memory storage device, the communication subsystem, the output device and the input device.
Abstract:
A wearable device is disclosed that, while being worn by a user, may allow a user to authenticate to a second device such as a smartphone without having to enter an unlock code such as a personal identification number. The wearable device may detect when the user removes it. Removal of the wearable device may cause it to be disabled and prevent it from being used to authenticate a subsequent user to the second device until it is re-enabled.
Abstract:
A remote control having a button for actuating an electric equipment unit, a dongle controlled by the remote control for transmitting control orders to the equipment unit, and a housing having a designated location for the dongle, the housing having a two-part case which is convertible from open to closed positions but not closable if the dongle is not in its designated location, the two parts of the case being slidable between two positions, with a latch between the two positions, and which is movable by removal or insertion of the dongle.