Abstract:
A remote controller 101 includes: an operation unit 11; a power generating unit 12 that generates electric power by operation on the operation unit 11; a signal generating unit 13 that operates by using the electric power generated by the power generating unit 12 and is able to output a signal of a kind corresponding to the content of each operation on the operation unit 11; a storage unit 15 that operates by using the electric power generated by the power generating unit 12 and nonvolatilely stores the content of an output signal of the signal generating unit 13; and a transmission control unit 14 that operates by using the electric power generated by the power generating unit 12 and transmits a wireless signal including information corresponding to the content of the output signal stored in the storage unit 15 when the operation on the operation unit 11 satisfies a predetermined condition.
Abstract:
Remote control device comprising a generator (PVU) intended to convert light or mechanical energy to electrical energy, a wireless transmitter (RF) able to send messages to a remote receiver, a first electrical energy storage element (C1) connected to the energy generator (PVU) and intended to be charged with the electrical energy generated by the generator (PVU) in order to supply power to the wireless transmitter (RF) in a first operating mode of the control device, and a second electrical energy storage element (C2) intended to supply power to the wireless transmitter (RF) in a second operating mode. The second electrical energy storage element is connected to the generator (PVU) via parallel connection of a first resistor (R1) and a first diode (D1), the cathode of the first diode being connected to the positive terminal of the generator (PVU).
Abstract:
A transmitter for remote control includes a first analog-to-digital converter (ADC) to receive a first audio signal from a electronic device and convert the first audio signal to a first direct-current (DC) signal, a first boost circuit connected to the first ADC to receive and amplify the first DC signal, a second ADC receives a second audio signal from the electronic device and converts the second audio signal to a second DC signal, a second boost circuit connected to the second ADC to receive and amplify the second DC signal, an energy storage element and a transmission module is powered by the energy storage element and generates a carrier signal, the transmission module receives the amplified first DC signal from the first boost circuit, the amplified first DC signal modulates the carrier signal generated by the transmission module, and the amplified second DC signal charges the energy storage element.
Abstract:
A remote control device for remotely controlling a toilet device is provided. The remote control device includes a casing, a power generation device, buttons, and a link mechanism. The casing forms a contour of the remote control device. The power generation device is housed in the casing and is capable of generating a power by being pressed. The buttons is provided on a surface of the casing and each is configured to activate a function of the toilet device. The link mechanism is configured to move so as to press the power generation device when one of the buttons is pressed. The buttons is supported on the casing by an elastic member so that, when one of the buttons is pressed to cause motion of the link mechanism, one other of the buttons not pressed is not affected by the motion of the link mechanism.
Abstract:
A remote controller adapted to interact with a system under control (SUC) is described. The remote controller includes: at least one input adapted to receive data from a user; a command interpreter adapted to evaluate data received via the at least one input and determine whether the received data is associated with a remote command from among a set of remote commands associated with the SUC; at least one communication element adapted to send remote commands to the SUC; and at least one haptic feedback element adapted to provide feedback to the user. A mobile device application adapted to remotely control an external system includes sets of instructions for: receiving an input via a user interface element of the mobile device; generating a command output based at least partly on the received input; and sending the control output to the external system.
Abstract:
A test device for testing functions of buttons of a remote control includes a storage unit, a pressing apparatus, and a processing unit. Identification (ID) information of each of the buttons and a predetermined code corresponding to each of the buttons are stored in the storage unit. When a control signal is received from the remote control after a button is pressed, the control signal is decoded to obtain a code of the control signal and the ID information of the button, which is being pressed. The code of the control signal is compared with the predetermined code stored in the storage unit corresponding to the pressed button to determine whether the pressed button is malfunctional.
Abstract:
A remote control device includes: a vibration power generator configured to convert externally applied vibrations to electric power; a storage section charged with the electric power obtained by the vibration power generator; a switch provided between the vibration power generator and the storage section; and a control circuit configured to output a vibration instruction signal and turn the switch on when the remaining power of the storage section becomes smaller than a predetermined amount. The electronic apparatus instructs the user to vibrate the remote control device in response to the vibration instruction signal.
Abstract:
A facility comprising systems, methods, and techniques for collecting data indicative of energy consumption and/or energy production by energy systems and devices and providing the data to interested users and devices in real-time is described. The facility may comprise an energy gateway device coupled to one or more monitored devices, one or more energy data extraction servers, and one or more client computers. The energy gateway devices and energy data extraction servers are coupled to a network and are configured to collect energy consumption and/or energy production data from one or more devices and provide an indication of the collected data in real-time or near real-time. The facility may collect current energy consumption or production rates, predicted energy consumption or production levels over a future period of time, and/or amounts of energy that has been consumed or produced by the device over a previous period of time.
Abstract:
A remote control device includes: a vibration power generator configured to convert externally applied vibrations to electric power; a storage section charged with the electric power obtained by the vibration power generator; a switch provided between the vibration power generator and the storage section; and a control circuit configured to output a vibration instruction signal and turn the switch on when the remaining power of the storage section becomes smaller than a predetermined amount. The electronic apparatus instructs the user to vibrate the remote control device in response to the vibration instruction signal.
Abstract:
Disclosed are devices, systems, apparatus, methods, products, and other implementations, including a control system that includes a receiving structure to receive a plurality of modular devices, with one or more of the plurality of modular devices being coupled into respective locations on the receiving structure and with each of the one or more of the plurality of modular devices configured to transmit a short-range communication in response to receiving a respective stimulus by the each of the one or more of the plurality of modular devices. The control system further includes a communication module to communicate with the one or more of the plurality of modular devices coupled to the receiving structure, and a controller configured to perform a respective operation in response to receiving a short-range message from a respective one of the one or more of the plurality of modular devices.