Abstract:
Microwave amplifiers are disclosed having a hollow helix slow-wave structure coupled directly to input and output waveguides. This helix-waveguide coupling structure couples the TEM mode of the helix to the TE10 mode of the rectangular waveguides and also defines ports communicating with the helix interior. Heating of the helix during high-power operation can be removed by cooling liquid pumped through the helix via these ports. The helix is surrounded by a cylindrical housing containing a low-pressure ionizable gas which forms a plasma channel that focuses the electron beam without the need for surrounding magnetic structures. A plasma cathode electron gun is arranged to inject an electron beam through the helix. Backflowing ions from the housing are harmlessly absorbed into the face of the plasma cathode. The microwave amplifier is converted to a backward wave oscillator by coupling a load to one of the waveguides.
Abstract:
An apparatus and method for measurement of ohmic loss and surface resistivity is provided with a straight lumen waveguide with at least one opening at one end. Diffraction of radiation introduced to the lumen at one end of the tube provides feedback to establish resonances within the tube. Using the "whispering gallery" resonant modes maximizes the total ohmic loss and thereby enhances sensitivity of resistivity measurements. The angle at which resonant radiation exits the lumen is a function of the mode and size of the operative. Thus, preferred spatial detection allows enhancement of the device signal while discriminating against undesired modes. Selection of modes allows high frequency measurements, into the tetraherz range, to be made without disabling restrictions in the device dimensions, spatial input/output coupling or ohmic loss depending on alignment for analysis of, for example, high temperature superconductors. Furthermore, more than one longitudinal mode for a given transverse mode can be detected allowing for an unambiguous determination of ohmic losses from a measurement of the total Q.
Abstract:
A high-power microwave/mm-wave oscillator is filled with an ionizable gas at a pressure of about 1-20 mTorr, into which an electron beam is injected at a high current density of at least about 1 amp/cm.sup.2, but typically 50-100 A/cm.sup.2. A plasma is formed which inhibits space-charge blowup of the beam, thereby eliminating the prior requirement of a magnet system to control the beam. The system functions as a slow-wave tube to produce narrow-band microwaves for a gas pressure of about 1-5 mTorr, and as a plasma wave tube to produce broadband microwave/mm-wave radiation for a gas pressure of about 10-20 mTorr. A new high output, hollow-cathode-plasma electron gun is employed in which a metal oxide layer is formed on the inner surface to enhance the secondary electron yield; a cathode, grid, and extraction anode have respective sets of multiple apertures which are mutually aligned to yield a high perveance beam; the cathode, grid, and anode are curved to geometrically focus the beam, and a beam with a circular cross-section is generated.