Abstract:
An explosion-proof actuator assembly includes an explosion-proof housing, a motor, motor control electronics, and an actuator. The housing has at least one inner cavity and at least one exit path comprising an explosion-proof flame path. The motor is disposed within the housing. The motor control electronics communicate with the motor and are disposed within the housing. The actuator is carried by the housing, communicates with the motor, and is configured for movement relative to the housing responsive to actuation of the motor.
Abstract:
The present invention provides an electrical component enclosure for installation in a location where a flammable gas or vapor is expected to be present. The electrical component enclosure incorporates a catalyst for inducing a reaction to convert a flammable fluid to a non-flammable product, thereby reducing the flammable fluid concentration and reducing the likelihood of the flammable fluid being ignited. The enclosure preferably permits the free exchange of gas and vapor between the surrounding atmosphere and the enclosure interior.
Abstract:
A sealing device for explosion-proof motors, the particularity of which is the fact that it comprises a first element which is coupled to the motor casing and a second element which is coupled to the driving shaft through rolling means; the first and second elements are mutually coupled through elastic elements to allow their relative movement.
Abstract:
A spark-protected alternator has an external cavity on an end plate of the alternator housing with commutating (slip) rings on an alternator shaft extension and mating metal brushes positioned within the external cavity. The external cavity is effectively sealed from ambient atmosphere surrounding the alternator, to provide protection from sparks generated between the brushes and commutating rings wherein a minimum area of the housing end plate is utilized. Integral extensions of the end plate form side walls of the external cavity that partially radially surround the shaft extension and commutating rings. A brush holder in which the brushes are attached has projections which mate with slots in the side walls to radially close the external cavity, and an end cap (including a gasket) closes an open end of the external cavity, while the end plate effectively closes the other end of the external cavity. The brush holder forms part of the walls that close the external cavity, and this minimizes the size of the external cavity required to seal the commutating rings and brushes from the ambient atmosphere.
Abstract:
A hydrogen recirculation blower is used in a hydrogen return arrangement in a fuel cell system. The blower includes a rotatable rotor with an end region on which an impeller is arranged, and a stator with coil windings and with a hydrogen barrier which is formed as a hollow body. The rotor is arranged in a cavity of the hydrogen barrier, with the hydrogen barrier running both between the rotor and the coil windings and between the impeller and the coil windings. The rotor and the stator form an electric motor for driving the impeller.
Abstract:
Methods and devices are provided that allow for easy replacement of a motor assembly in a fuel dispensing unit. In one embodiment, a protective end cap for use with a motor assembly is provided and includes a junction box housing having a sealed end that can couple to a motor, and an opposite open end that can couple to an end plate. The junction box housing can be configured to house a junction box that allows electrical wires extending through the end plate to couple to electrical wires extending from the motor through the sealed end of the junction box housing. A motor assembly having a junction box housing and methods for replacing a motor assembly in a fuel dispenser are also provided.
Abstract:
Mechanisms are provided to control the operation of a motor. In particular, a variable frequency drive motor controller is described which resides within a motor housing. Additionally, the speed at which the motor operates is based on a signal received from a Hall Effect switch or from a communication device in communication with a remote interface. The Hall Effect switch is also described; in particular, the Hall Effect switch features a magnet rotatably connected with one side of a motor housing. A Hall Effect sensor, located on the opposite side of the motor housing, detects the position of the magnet and outputs a signal to the motor controller, located within the motor housing, indicating the detected magnet position. Additional operating features are described relating to the safe operation and control of the motor in potentially hazardous environments.